An open-label, phase I trial of BI 754091 alone and in combination with BI 754111 in Asian patients (pts) with advanced solid tumors.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3054-3054
Author(s):  
Yoon-Koo Kang ◽  
Kensei Yamaguchi ◽  
Do-Youn Oh ◽  
Shunsuke Kondo ◽  
Yasutoshi Kuboki ◽  
...  

3054 Background: Dual blockade of immune checkpoint molecules, PD-1 and LAG-3, may enhance the anti-tumor response versus PD-1 blockade alone. This Phase I trial investigated BI 754091, an anti-PD-1 antibody, as monotherapy and in combination with BI 754111, an anti-LAG-3 antibody, in Asian pts with advanced solid tumors. Methods: This trial comprised 3 parts. Parts 1 and 2 (dose escalation) were in pts with unresectable/metastatic solid tumors. In Part 1, pts received BI 754091 240 mg intravenously (iv), every 3 weeks (q3w); in Part 2, pts received BI 754091 240 mg in combination with BI 754111 (400 mg, 600 mg or 800 mg iv, q3w). Dose escalation was guided by a Bayesian logistic regression model, with overdose control. The primary endpoint in Parts 1 and 2 was maximum tolerated dose (MTD) of BI 754091 alone or in combination with BI 754111, based on dose-limiting toxicities (DLTs) in Cycle 1. In Part 3, BI 754091 240 mg plus BI 754111 600 mg q3w was assessed in 4 expansion cohorts. Cohorts A–C included pts with: A) gastric/esophagogastric junction cancer; B) esophageal cancer; C) hepatocellular cancer; all had received ≥1 line of prior systemic therapy and no prior anti-PD-(L)1 therapy. Cohort D included pts who had received prior anti-PD-(L)1 therapy for the tumor types in Cohorts A–C. The primary endpoint in Part 3 was objective response (confirmed complete response or partial response [PR] per RECIST 1.1). Results: In Part 1, 6 pts received BI 754091 240 mg. In Part 2, 9 pts received BI 754091 240 mg plus BI 754111 (400 mg/600 mg/800 mg; n = 3 per cohort). No DLTs were reported in Parts 1 and 2. In Part 3, 121 pts were treated (97 [80%] male, median age 61 years [range 23–80]); Cohorts A/B/C/D included 33/33/20/35 pts. All-grade adverse events (AEs) and treatment-related AEs (TRAEs) were experienced by 96 (79%) and 47 (39%) pts, respectively. The most commonly reported AEs (all/≥G3) were pyrexia (21%/0%), decreased appetite (17%/2%), anemia (11%/6%), and nausea (9%/0%). 36 (30%) pts reported immune-related AEs, most commonly hypothyroidism, in 7 (6%) pts. Confirmed PR was observed in 6 pts (5%; Cohort A/B, n = 4/2) and 35 (29%) pts had stable disease (Cohort A/B/C/D, n = 9/11/10/5). Conclusions: MTD was not reached for BI 754091 monotherapy or for BI 754091 in combination with BI 754111. The recommended dose for the combination was determined as BI 754091 240 mg plus BI 754111 600 mg q3w. Treatment was well tolerated and consistent with that observed in the global trial. Preliminary anti-tumor activity was seen. Clinical trial information: NCT03433898 .

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2578-2578
Author(s):  
Devalingam Mahalingam ◽  
Montaser F. Shaheen ◽  
John Sarantopoulos ◽  
Steven Weitman ◽  
Beppino C. Giovanella ◽  
...  

2578 Background: CZ48, the 20-O-propionate ester of camptothecin (CPT), is a prodrug of CPT first described by Cao et al. in 1998. The side-chain is enzymatically cleaved in tissues. This gives rise to CPT, a potent inhibitor of topoisomerase I. Methods: An open-label, single-arm, dose-escalation Phase I study was performed to determine the maximum tolerated dose (MTD) of CZ48 in patients with advanced solid tumors. Initial dosing started qd po 80mg/m2, advancing to 2560mg/m2 for 21 consecutive days, followed by 7 days rest. Dosing was restarted in cohorts of 3 patients tid po at 18mg/m2 and escalated to 1g/m2on a 5 days on, 2 days off schedule for 28 days. Patients were prescreened by measuring CPT levels in plasma following a single pilot dose of CZ48. Dose was doubled until occurrence of at least Grade 2 adverse event, at which time 3+3 patient cohorts with a dose escalation of 33%-100% were implemented. DLT in 2/6 patients defined the MTD as the preceding DLT dose. PK parameters were measured prior to dosing, days 1-5, and day 28 of Cycle 1. Results: Poor absorption led to initial qd dosing reaching 2560mg/m2 with no signs of DLT. Subsequent tid dosing showed improved plasma levels and arrival at DLT. 34 patients were treated across 8 dose levels from 18 to 1000 mg/m2. The most frequent study-related adverse effects were cystitis, vomiting, diarrhea and fatigue. Grade IV toxicities observed were febrile neutropenia, anemia, and thrombocytopenia. Preliminary PK data in the qd dosing showed poor correlation between dose and Cmax or AUC, while PK in tid patients showed slightly improved correlation between dose and both CZ48 AUC (Pearson's correlation coefficient ϱ=0.476, p<0.01) and CZ48 Cmax(ϱ =0.51, p<0.01). Evidence of clinical activity with stable disease ≥ 6 months was observed in 2 heavily pre-treated colon and one breast cancer patient. Conclusions: The MTD of tid po CZ48 administered 5 days on, 2 days off of 28-day cycle is between 750 mg/m2 and 576 mg/m2. Overall toxicity is relatively mild, with DLT being cystitis and myelosuppression. Even with tid dosing, PK values correlate poorly to dose. A new formulation with 3-5 fold higher preclinical absorption values is being considered for introduction into the trial. Clinical trial information: NCT00947739.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 3026-3026 ◽  
Author(s):  
Nicolas Isambert ◽  
Antoine Hollebecque ◽  
Yann Berge ◽  
Hein van Ingen ◽  
Silvano Brienza ◽  
...  

3026 Background: Debio 0932 is an oral second-generation heat shock protein 90 (HSP90) inhibitor that has shown extended tumor retention, blood-brain-barrier penetration, and promising anti-tumor activity both as monotherapy and combination against a broad range of tumors in pre-clinical models. Here we report the results of the dose escalation part of a phase I study in patients with advanced solid tumors or lymphoma (NCT01168752). Methods: This was an open-label, non-randomized, 3 + 3 dose-escalation study to determine the maximum tolerated dose (MTD) of Debio 0932 when given QD or Q2D during the first 30 days of treatment in patients with advanced solid tumours or lymphoma resistant to standard therapy. The starting dose in both treatment groups was 50mg. Doses were increased according to an algorithm based on observed toxicity and dose limiting toxicities (DLT). Tumor assessments were performed every 8 weeks. Results: Patient characteristics and results are summarized below. DLTs occurred at 1600mg in both dose groups. Adverse events (AE) were mostly CTCAE grade 1 or 2, with no apparent dose relationship. No ocular or cardiac toxicity was observed. The main reason for treatment withdrawal was progressive disease. Investigator-reported cases of SD and PR were observed. Conclusions: Debio 0932 mono-therapy was generally well tolerated and showed promising signs of efficacy in patients with advanced solid tumors. The recommended phase II dose, established at 1000mg QD, will be tested in an additional 30 patients in an ongoing expansion study. A phase I-II study of Debio 0932 in combination with standard of care in the first- and second-line treatment of NSCLC is planned. [Table: see text]


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3098-3098
Author(s):  
Melissa Lynne Johnson ◽  
Jan G. C. E. Cosaert ◽  
Gerald Steven Falchook ◽  
Suzanne Fields Jones ◽  
Donald Strickland ◽  
...  

3098 Background: Aurora kinase B (AURKB) represents a potential target for therapy in solid and hematological malignancies. AURKB inhibitor AZD1152 (barasertib) was previously investigated in solid tumor pts in a phase I setting. AZD2811-nanoparticle (np) is a novel, encapsulated slow release AURKB inhibitor offering several advantages over AZD1152 (Ashton S et al., Sci Transl Med 2016). We report the completed dose-escalation safety, pharmacokinetics (PK), preliminary activity and defined maximum tolerated dose (MTD) of AZD2811-np in pts with advanced solid tumors (NCT02579226). Methods: Adult pts with advanced solid tumors received AZD2811-np IV on Day 1 (D1) and 4 (D4) Q4 week (wk) in six cohorts 15-200 mg/infusion without the use of g-csf in cycle 1. D1 Q4wk and Q3wk schedules were investigated up to 600 mg/infusion (including cohorts with mandatory g-csf prophylaxis on day 8). A standard 3+3 design was used. PK was assessed in cycle 1. Results: 50 pts were recruited into 12 cohorts. D1, D4 Q4wk schedule: 24 pts (15, 25,38, 50, 100 mg/infusion (n=3/cohort), 200 mg/infusion (n=9)). All cohorts were tolerated. Transient grade 4 neutropenia was observed in 7/9 pts at 200 mg/infusion, including 1 DLT (gr4 > 7 days) D1 Q4wk: 200 mg(n=3) was tolerated. D1 Q3wk: 23 pts were evaluated (200/400 mg (n=3,7), and 400/600/500 mg with mandatory g-csf (n=3/5/6)). 400 mg without g-csf was not tolerated (1 gr3 mucosal inflammation & 1 gr4 neutropenia > 7 days). 600 mg with g-csf was not tolerated (gr3 febrile neutropenia & gr3 fatigue). 25/50 pts experienced AE ≥gr 3 (21 considered AZD2811-np-related, 19 neutropenia-related, no deaths within-DLT period). AZD2811-np caused transient gr1/2 fatigue, nausea, diarrhoea and mucosal inflammation. AZD2811 total blood PK appears dose proportional with a t1/2 of 30-50 hours irrespective of schedule. Released AZD2811 concentrations ~1% of total. 14 pts (28%) had disease stabilisation. 1 prostate ca. pt had a confirmed partial response (PR) (continued tx to 451 days). Conclusions: The MTD for AZD2811-np is 500 mg D1 Q3wk. AZD2811-np is now being investigated in a small cell lung cancer expansion. Clinical trial information: NCT02579226.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3101-3101
Author(s):  
Ying Cheng ◽  
Ying Liu ◽  
Jinhua Xu ◽  
Jing Zhu ◽  
Ying Wang ◽  
...  

3101 Background: IDO is an enzyme of interest in immuno-oncology because of the immunosuppressive effects that result from its role in tryptophan catabolism. Clinical trials of IDO inhibitors with immunotherapy are under active investigation. The addition of angiogenesis inhibitor may further enhance the anti-tumor immune responses. Here we report the safety and efficacy results of SHR9146 (IDO inhibitor) plus camrelizumab (PD-1 antibody) with/without apatinib (VEGFR-2 inhibitor) in patients (pts) with advanced solid cancers who failed standard antitumor therapies. Methods: This was an open-label, phase I study. Eligible puts would receive SHR9146 (escalated dose) plus camrelizumab (200 mg IV, q2w) alone (Cohort A) or in combination with apatinib (250 mg p.o. qd) (Cohort B). Each cohort was conducted according to a 3+3 dose escalation design. The starting dose of SHR9146 was 100mg bid, followed by 200, 400, 600 mg bid. The two primary endpoints were Dose-limiting Toxicity (DLT) and Maximum Tolerated Dose (MDT). The secondary objective was to analysis the incidence of Adverse Events (AEs) and efficacy. Results: As of Oct 31, 2020, 23 pts have been enrolled (Cohort A:14, Cohort B: 9; median age: 54 years; median prior therapies: 2 lines;). Cohort A was escalating at 600mg, and Cohort B was escalating at 400mg. Two pts experienced DLTs: one DLT (G4 hypercalcemia) was observed at 600mg in Cohort A; the other DLT (G3 rash) was observed at 400mg in Cohort B. MDT was not reached and the study was still ongoing. In Cohort A, ORR and DCR in evaluable pts were 21.4% (3/14, all confirmed) and 42.9% (6/14). Partial response was observed in 3 pts with liver cancer (1/3), renal cancer (1/3), and cervix cancer (1/3). In Cohort B, ORR and DCR in evaluable pts were 33.3%(3/9, all confirmed) and 77.8%(7/9). Partial response was observed in 3 pts with SCLC (1/3), prostate cancer (1/3) and renal cancer (1/3). The incidence of pts with TRAEs and grade>=3 TRAEs were 91.3% (21/23) and 39.1% (9/23) respectively. The most common grade>=3 TRAEs were hypercalcemia (26.1%, 6/23), fatigue (17.4%, 4/23) and nausea (13.0%, 3/23). No fatal AEs were observed. G3 nausea, G3 lipase increased and G2 GGT increased resulted in SHR9146 dose reduction in 3 pts (Cohort A). Conclusions: SHR9146 plus camrelizumab in combination with/without apatinib demonstrated promising anti-tumor activity with acceptable safety in pts with advanced solid tumors. Further study is needed to validate the efficacy and safety. Clinical trial information: NCT03491631.


2020 ◽  
Vol 8 (2) ◽  
pp. e000870
Author(s):  
Aung Naing ◽  
Joseph P Eder ◽  
Sarina A Piha-Paul ◽  
Claude Gimmi ◽  
Elizabeth Hussey ◽  
...  

BackgroundM4112 is an oral, potent, and selective indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) dual inhibitor. Here, we report preclinical data and first-in-human phase I data, including safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy, of M4112 monotherapy in patients with advanced solid tumors.MethodsIn preclinical studies, M4112 was administered to mice with IDO1-expressing tumors to determine tumor IDO1 and liver TDO2 inhibition. In the phase I trial, patients received doses of M4112 two times per day in 28-day cycles until progression, toxicity, or withdrawal of consent. The primary objective was to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). The primary endpoint was the incidence of dose-limiting toxicities (DLTs), treatment-emergent adverse events (TEAEs), and treatment-emergent changes in safety parameters. Other endpoints included pharmacokinetics, pharmacodynamics, and antitumor effects.ResultsIn mice, M4112 significantly decreased the kynurenine:tryptophan ratio in the liver and tumor. Fifteen patients received M4112 at five distinct dose levels (three patients per cohort: 100, 200, 400, 600, and 800 mg two times per day orally). Initially, all doses inhibited IDO1 ex vivo, but plasma kynurenine levels returned to or exceeded baseline levels after day 15. Despite initial changes in kynurenine, there was no significant reduction of plasma kynurenine at steady state. There was one DLT (grade 3 allergic dermatitis; 800 mg two times per day) and one grade 2 QT prolongation (800 mg two times per day), resulting in dose reduction (not a DLT). M4112 was well tolerated, and neither the MTD nor the RP2D was established. TEAEs included fatigue, nausea, and vomiting. The best overall response was stable disease (n=9, 60%).ConclusionsThere were no serious safety concerns at any dose. Although M4112 inhibited IDO1 activity ex vivo, plasma kynurenine levels were not reduced despite achieving target exposure.Trial registration numberNCT03306420.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2039-2039
Author(s):  
C. Aghajanian ◽  
O. O’Connor ◽  
M. Cohen ◽  
R. Peck ◽  
H. Burris

2039 Background: Ixabepilone is the first analog in a new class of antineoplastic agents, the epothilones, which stabilizes microtubules and induces apoptosis. Ixabepilone has shown clinical activity in a broad range of tumors. Methods: This Phase I trial was designed to establish the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), efficacy, safety, pharmacokinetics and pharmacodynamics of ixabepilone when administered as a 1-hour infusion every 3 weeks to patients with advanced solid tumors or lymphoma. Eligible patients were aged ≥18 years with histologically/cytologically confirmed non-hematologic cancer, or a pathologic diagnosis of relapsed/primary refractory non-Hodgkin’s lymphoma (NHL) or relapsed/primary refractory mantle cell lymphoma, with ≤CTC Grade 1 neuropathy. Ixabepilone doses ranged from 7.5–65 mg/m2. Response was assessed every 6 weeks using RECIST. DLT was defined as Grade 4 neutropenia and/or febrile neutropenia, thrombocytopenia, ≥Grade 3 nausea/vomiting and non-hematologic toxicity, or treatment delay of >2 weeks due to delayed recovery. Results: Of 61 patients (median age 58, range 18–81), 75% had solid tumors; 25% had lymphoma. 98% and 67% of patients had received one or ≥ two prior chemotherapy regimens, respectively. The MTD of ixabepilone as a 1-hour infusion every 3 weeks was established as 50 mg/m2. The most common DLTs were neutropenia, myalgia, arthralgia and stomatitis/pharyngitis. A total of eight patients (13%) achieved a durable objective response. Complete responses were achieved in two patients with primary peritoneal cancer and NHL. A partial response was seen in six patients. The most common Grade 3/4 treatment-related adverse events (only observed at doses ≥40 mg/m2) were sensory neuropathy (13%), fatigue (13%), myalgia (10%), arthralgia (7%), nausea (5%), febrile neutropenia (5%) and neutropenia (5%). Recovery to baseline or ≤Grade 1 neuropathy occurred in some patients. Conclusions: The recommended dose of ixabepilone for the initiation of Phase II studies based on this study is 50 mg/m2 over 1 hour every 3 weeks. Ixabepilone demonstrates promising safety in patients with solid tumors or lymphoma who have failed standard therapy. Encouraging activity was reported in several tumor types. [Table: see text]


2011 ◽  
Vol 29 (15_suppl) ◽  
pp. 3033-3033 ◽  
Author(s):  
A. L. Ho ◽  
J. C. Bendell ◽  
J. M. Cleary ◽  
G. K. Schwartz ◽  
H. A. Burris ◽  
...  

2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 2508-2508 ◽  
Author(s):  
David S. Hong ◽  
Yoon-Koo Kang ◽  
Andrew Jacob Brenner ◽  
Jasgit C. Sachdev ◽  
Samuel Ejadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document