aurora kinase b
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 55)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Azusa Tanimoto ◽  
Carminia M. Della Corte ◽  
Kavya Ramkumar ◽  
Robert J. Cardnell ◽  
Allison C. Stewart ◽  
...  

2021 ◽  
Author(s):  
Keyu Yuan ◽  
Min Wu ◽  
Xue Yu ◽  
Xia Zhao ◽  
Yu Feng ◽  
...  

Abstract Background: Breast cancer (BC) has become the leading cause of death for women's malignancies and increasingly threatens the health of women worldwide. However, the basal-like BC is lack of effective targeted drugs. Therefore, biomarkers that related to the prognosis of early breast cancer need to be found.Methods: The RNA-seq data of 87 cases of early basal-like BC and 111 cases of normal breast tissue from The Cancer Genome Atlas (TCGA) were explored by Weighted Gene Co-Expression Network Analysis (WGCNA)method and Limma package. Then intersected genes (IGs) were identified and hub genes were selected by Maximal Clique Centrality method. The prognostic effect of the hub genes was also evaluated in early basal-like BC. Results: A total of 601 IGs were identified in this study. APPI network was constructed and top 10 hub genes were selected, namely cyclin B1 (CCNB1), cyclin A2 (CCNA2), cyclin dependent kinase 1 (CDK1), cell division cycle 20 (CDC20), DNA topoisomerase II alpha (TOP2A), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), aurora kinase B (AURKB), cyclin B2 (CCNB2), kinesin family member 11 (KIF11), and assembly factor for spindle microtubules (ASPM). Only AURKB was found to be significant with the overall prognosis of early basal-like BC. The immune cells infiltration analysis displayed that the infiltration numbers of CD4+ T cell and naïve CD8+ T cell were positively correlated with AURKB expression level, while that of naïve B cell and macrophage M2 cell were negatively correlated with AURKB expression level in basal-like BC.Conclusion: AURKB might be a potential prognostic indicator in early basal-like BC.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4707-4707
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Akihiko Gotoh

Abstract Introduction: Multiple myeloma (MM) is a uniformly fatal disorder of B cells characterized by the clonal expansion of plasma cells in the bone marrow. The treatment of MM patients has been dramatically changed by new agents such as proteasome inhibitors and immunomodulatory drugs, however, many patients will relapse even if new agents provide therapeutic advantages. Therefore, a new strategy is still needed to increase MM patient survival. Metabolic reprogramming is recognized as one of the hallmarks of cancer cells. Glutamine is the most abundant circulating amino acid in blood, glutamine metabolism through glutaminolysis may be associated with myeloma cell maintenance and survival. Materials and Methods: In this study, we investigated whether glutaminolysis was involved the proliferation in myeloma cells. We also investigated whether glutaminase (GLS) inhibitor, CB-839 could suppress myeloma cells and enhance the sensitivity of myeloma cells to histone deacetylase (HDAC) inhibition. Results: We first investigated the relationship between glutamine transporter or GLS gene expression and MM patients by microarray gene expression data from the online Gene Expression Omnibus (GEO). Glutamine transporter genes such as SLC38A1 and SLC1A5 were increased in myeloma and plasma cell leukemia cells (GSE13591). In contrast, GLS1 expression was not changed. We next investigated the glutaminolysis in myeloma cells. Deprivation of glutamine in culture medium revealed that cellular growth inhibition and cell cycle arrest at G0/G1 phase. Gene expression of AURKA (aurora kinase A), AURKB (aurora kinase B), HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1) and CCNB1 (cyclin B1) were reduced from the public microarray datasets (GSE59931) and protein expressions were also reduced by immunoblot analysis. We next evaluated the effect of GLS inhibitor, CB-839. 72 h treatment of MM cells were inhibited by CB-839 in a dose dependent manner. Cellular cytotoxicity was also increased. Glutamine is converted by GLS into glutamate and alpha-ketoglutarate (α-KG), and related nicotinamide adenine dinucleotide phosphate (NADP) production. Intracellular α-KG and NADPH were reduced by CB-839. As metabolites are the substrates used to generate chromatin modification including acetylation of histone, we investigated HDAC inhibitor, panobinostat in myeloma cells. 72 h treatment of MM cells were inhibited by panobinostat and histone acetylation was increased. Combined treatment with panobinostat and CB-839 caused more cytotoxicity than each drug alone. Panobinostat and CB-839 also inhibited bortezomib resistant cells. Caspase 3/7 activity and cellular cytotoxicity were also increased. Proteasomal activity was reduced. Adenosine triphosphate (ATP) is the most important source of energy for intracellular reactions. Intracellular ATP levels drastically decreased. Because mitochondria generate ATP and participate in signal transduction and cellular pathology and cell death. The quantitative analysis of JC-1 stained cells changed mitochondrial membrane potential in cell death, which were induced by panobinostat and CB-839 on myeloma cells. Immunoblot analysis revealed that protein expression of aurora kinase A, aurora kinase B, HSP90 and cyclin B1 were reduced, and cleaved caspase 3 and γ- H2AX were increased by panobinostat and CB-839 treatment. GLS shRNA transfectant cells were inhibited cellular proliferation and sub-G1 phase was increased by cell cycle analysis. GLS shRNA transfectant cells were increased the sensitivity of panobinostat compared to control cells. Conclusion: The glutaminolysis is involved myeloma cell proliferation and GLS inhibitor is effective to myeloma cells and enhance cytotoxic effects of HDAC inhibitors. We also provide the promising clinical relevance as a candidate drug for treatment of myeloma patients. Disclosures No relevant conflicts of interest to declare.


Aging Cell ◽  
2021 ◽  
Author(s):  
Cecilia S. Blengini ◽  
Alexandra L. Nguyen ◽  
Mansour Aboelenain ◽  
Karen Schindler

Development ◽  
2021 ◽  
Author(s):  
Mansour Aboelenain ◽  
Karen Schindler

Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates activates mRNA polyadenylation. One message is Aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking Aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated Aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background, reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function critical to generating euploid eggs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajda Ashraf ◽  
Kara E. Ranaghan ◽  
Christopher J. Woods ◽  
Adrian J. Mulholland ◽  
Zaheer Ul-Haq

AbstractAurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine atom-based 3D-QSAR analysis and pharmacophore model generation to identify the principal structural features of acylureidoindolin derivatives that could potentially be responsible for the inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results with cross-validation values (q2) of 0.68, 0.641 and linear regression values (r2) of 0.971, 0.933 respectively. These values support the statistical reliability of our model. A pharmacophore model was also generated, incorporating features of reported crystal complex structures of Aurora kinase B. The pharmacophore model was used to screen commercial databases to retrieve potential lead candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore model, followed by molecular docking and filtering based on their interaction with active site residues and 3D-QSAR predictions. Subsequently, MD simulations and binding free energy calculations were performed to test the predictions and to characterize interactions at the molecular level. The results suggested that the identified compounds retained the interactions with binding residues. Binding energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C as major contributors to binding affinity, complementary to 3D-QSAR results. To best of our knowledge, this is the first comparison of WaterSwap field and 3D-QSAR maps. Overall, this integrated strategy provides a basis for the development of new and potential AK-B inhibitors and is applicable to other protein targets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aner Mesic ◽  
Marija Rogar ◽  
Petra Hudler ◽  
Nurija Bilalovic ◽  
Izet Eminovic ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the most frequent type of primary astrocytomas. We examined the association between single nucleotide polymorphisms (SNPs) in Aurora kinase A (AURKA), Aurora kinase B (AURKB), Aurora kinase C (AURKC) and Polo-like kinase 1 (PLK1) mitotic checkpoint genes and GBM risk by qPCR genotyping. In silico analysis was performed to evaluate effects of polymorphic biological sequences on protein binding motifs. Chi-square and Fisher statistics revealed a significant difference in genotypes frequencies between GBM patients and controls for AURKB rs2289590 variant (p = 0.038). Association with decreased GBM risk was demonstrated for AURKB rs2289590 AC genotype (OR = 0.54; 95% CI = 0.33–0.88; p = 0.015). Furthermore, AURKC rs11084490 CG genotype was associated with lower GBM risk (OR = 0.57; 95% CI = 0.34–0.95; p = 0.031). Bioinformatic analysis of rs2289590 polymorphic region identified additional binding site for the Yin-Yang 1 (YY1) transcription factor in the presence of C allele. Our results indicated that rs2289590 in AURKB and rs11084490 in AURKC were associated with a reduced GBM risk. The present study was performed on a less numerous but ethnically homogeneous population. Hence, future investigations in larger and multiethnic groups are needed to strengthen these results.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1320
Author(s):  
Filip Pajpach ◽  
Linda Shearwin-Whyatt ◽  
Frank Grützner

Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplications and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meiosis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved in mammals. Cohesins are another family of genes that are of vital importance for chromosome cohesion and segregation at mitosis and meiosis. Previous work has demonstrated an accumulation and differential loading of structural maintenance of chromosomes 3 (SMC3) on the platypus sex chromosome complex at meiotic prophase I. We investigated if a similar accumulation occurs in the echidna during meiosis I. In contrast to platypus, SMC3 was only found on the synaptonemal complex in echidna. This indicates that the specific distribution of SMC3 on the sex chromosome complex may have evolved specifically in platypus.


2021 ◽  
pp. candisc.0815.2020
Author(s):  
Jia Xu ◽  
Xufen Yu ◽  
Tiphaine C Martin ◽  
Ankita Bansal ◽  
Kakit Cheung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document