Restoration of ecosystems and long-term stabilization of initially acidic pit lakes, Gilt Edge Mine Superfund Site, South Dakota

2004 ◽  
pp. 399-406
Author(s):  
Kenneth Wangerud ◽  
Joseph Harrington ◽  
Steven Fundingsland
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2368 ◽  
Author(s):  
Małgorzata Oszkinis-Golon ◽  
Marcin Frankowski ◽  
Leszek Jerzak ◽  
Andrzej Pukacz

Thirteen pit lakes of the Muskau Arch (Western Poland) were studied in the summer season of 2016. The lakes display great geomorphological and hydrochemical diversity. The aim of the study was to characterize temporal changes in the physicochemical conditions of the pit lakes over the last 30 years (1986–2016) and to determine the main factors influencing their evolution. All the lakes were characterized in terms of the same set of physicochemical parameters measured and used for comparative analysis with literature data from the years 1986 and 1992. The results showed significant temporal differentiation in terms of morphometric features and most of the physicochemical characteristics. pH, EC, Ca2+, Mg2+ and total Fe were among the most significantly differentiating parameters. A similar pattern of changes was found for most of the lakes, suggesting natural fluctuations. Despite the differences in values of thermal and oxygen profiles, there were also similarities in lake stratification. Additionally, meromictic conditions were found in 4 lakes. In some of the lakes a negative effect of neutralization and fertilization of the water was observed. Our results showed that the Muskau Arch lakes are subject to dynamic hydrogeological and hydrochemical changes. In addition to natural changes, human-caused transformations were among the key factors responsible for the differentiation of the physicochemical conditions.


Author(s):  
Ronald Collins ◽  
Wouter Gulden ◽  
Dan R. Brown

The traveling public generally recognizes the smoothness of a pavement as a major indicator of quality. A newly constructed pavement can have excellent materials, mix design, compaction, and so forth, but if the public considers the ride rough, the quality is considered poor. While continually striving to improve the quality of paving materials in mix designs, the Georgia Department of Transportation (GDOT) began an effort in 1968 to attain the ability to accurately measure the smoothness of a pavement so that this indicator of quality could be measured and specified during construction. GDOT has been using response-type smoothness-measurement systems in its construction specifications for acceptance of projects since 1972 and since 1979 for both rejection and acceptance. The evolution of the pavement smoothness-measuring program in Georgia, the program operating procedures, and the current smoothness specifications are described. The long-term benefits of smoothness specification for pavement construction are also discussed, as is GDOT's effort to replace the Mays Meter trailer systems currently used with South Dakota–type, laser-based road profilers.


2016 ◽  
Vol 58 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Alice R. Millikin ◽  
Meghann E. Jarchow ◽  
Karen L. Olmstead ◽  
Rustan E. Krentz ◽  
Mark D. Dixon

Author(s):  
Chunming Su ◽  
Robert W. Puls ◽  
Thomas A. Krug ◽  
Mark T. Watling ◽  
Suzanne K. O'Hara ◽  
...  

This chapter addresses a case study of long-term assessment of a field application of environmental nanotechnology. Dense Non-Aqueous Phase Liquid (DNAPL) contaminants such as Tetrachloroethene (PCE) and Trichloroethene (TCE) are a type of recalcitrant compounds commonly found at contaminated sites. Recent research has focused on their remediation using environmental nanotechnology in which nanomaterials such as nanoscale Emulsified Zerovalent Iron (EZVI) are added to the subsurface environment to enhance contaminant degradation. Such nanoremediation approach may be mostly applicable to the source zone where the contaminant mass is the greatest and source removal is a critical step in controlling the further spreading of the groundwater plume. Compared to micro-scale and granular counterparts, NZVI exhibits greater degradation rates due to its greater surface area and reactivity from its faster corrosion. While NZVI shows promise in both laboratory and field tests, limited information is available about the long-term effectiveness of nanoremediation because previous field tests are mostly less than two years. Here an update is provided for a six-year performance evaluation of EZVI for treating PCE and its daughter products at a Superfund site at Parris Island, South Carolina, USA. The field test consisted of two side-by-side treatment plots to remedy a shallow PCE source zone (less than 6 m below ground surface) using pneumatic injection and direct injection, separately in October 2006. For the pneumatic injections, a two-step injection procedure was used. First, the formation was fluidized by the injection of nitrogen gas alone, followed by injection of the EZVI with nitrogen gas as the carrier. In the pneumatic injection plot, 2,180 liters of EZVI containing 225 kg of iron (Toda RNIP-10DS), 856 kg of corn oil, and 22.5 kg of surfactant were injected to remedy an estimated 38 kg of chlorinated volatile compounds (CVOC)s. Direct injections were performed using a direct push rig. In the direct injection plot, 572 liters of EZVI were injected to treat an estimated 0.155 kg of CVOCs. Visual inspection of collected soil cores before and after EZVI injections shows that the travel distance of EZVI was dependent on the method of delivery with pneumatic injection achieving a greater distance of 2.1 m than did direct injection reaching a distance of 0.89 m. Significant decreases in PCE and TCE concentrations were observed in downgradient wells with corresponding increases in degradation products including significant increases in ethene. In the pneumatic injection plot, there were significant reductions in the downgradient groundwater mass flux values for chlorinated ethenes (>58%) and a significant increase in the mass flux of ethene (628%). There were significant reductions in total CVOCs mass (78%), which was less than an estimated 86% decrease in total CVOCs made at 2.5 years due to variations in soil cores collected for CVOCs extraction and determination; an estimated reduction of 23% (vs.63% at 2.5 years) in the sorbed and dissolved phases and 95% (vs. 93% at 2.5 years) reduction in the PCE DNAPL mass. Significant increases in dissolved sulfide, volatile fatty acids (VFA), and total organic carbon (TOC) were observed and dissolved sulfate and pH decreased in many monitoring wells. The apparent effective destruction of CVOC was accomplished by a combination of abiotic dechlorination by nanoiron and biological reductive dechlorination stimulated by the oil in the emulsion. No adverse effects of EZVI were observed for the microbes. In contrast, populations of dehalococcoides showed an increase up to 10,000 fold after EZVI injection. The dechlorination reactions were sustained for the six-year period from a single EZVI delivery. Repeated EZVI injections four to six years apart may be cost-effective to more completely remove the source zone contaminant mass. Overall, the advantages of the EZVI technology include an effective “one-two punch” of rapid abiotic dechlorination followed by a sustained biodegradation; contaminants are destroyed rather than transferred to another medium; ability to treat both DNAPL source zones and dissolved-phase contaminants to contain plume migration; ability to deliver reactants to targeted zones not readily accessible by conventional permeable reactive barriers; and potential for lower overall costs relative to alternative technologies such as groundwater pump-and-treat with high operation and maintenance costs or thermal technologies with high capital costs. The main limitations of the EZVI technology are difficulty in effectively distributing the viscous EZVI to all areas impacted with DNAPL; potential decrease in hydraulic conductivity due to iron corrosion products buildup or biofouling; potential to adversely impact secondary groundwater quality through mobilization of metals and production of sulfides or methane; injection of EZVI may displace DNAPL away from the injection point; and repeated injections may be required to completely destroy the contaminants.


Sign in / Sign up

Export Citation Format

Share Document