oxygen profiles
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 14)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariyah Pressley ◽  
Jill A. Gallaher ◽  
Joel S. Brown ◽  
Michal R. Tomaszewski ◽  
Punit Borad ◽  
...  

AbstractTumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is low. In cancer, this condition is known as pseudohypoxia or the “Warburg Effect”. We conclude that rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent with the ecological theory of optimal defense.


2021 ◽  
Vol 1 (1) ◽  
pp. 7-11
Author(s):  
Luki Subehi ◽  
Iwan Ridwansyah ◽  
Takehiko Fukushima

In general, the tropical lake in Indonesia is one of the unique ecosystems which are functioning in both ecological and economic services. This study aims to analyze the dissolved oxygen profile of caldera tropical lake represented by Lake Maninjau at West Sumatera, Indonesia, and its impacts. Lake Maninjau is not only for culture fisheries but also serves as important hydroelectricity power. Surveys at Lake Maninjau were conducted in August 2006, March 2014, September 2017, and April 2018. The results showed that the average depth is 105 m. It covers 13,260 ha of an area with an elevation of 461.5 m above sea level and a maximum depth of 165 m. The lake water comes from rainfall, small rivers, and the surrounding groundwater, with one outflow in the Batang Antokan River. Based on the measurement, it was observed that decreasing dissolved oxygen levels occurred at the surface to the depth of 40 m in 2006, and changed from surface to a depth of 12 m in 2018 indicating the worse condition of water quality compared with the previous years.  Recently, bad water quality with mass mortality of cultured fish often occurs. Next, the percentage of fish cages area at Lake Maninjau in 2017 was 0.43%. Besides human activities, it was suggested that fish cages also contributed pollutant load to this lake. To maintain the sustainability of the lake, basic ecological information is necessary for the next study.


2020 ◽  
pp. jeb.230219
Author(s):  
Cassondra L. Williams ◽  
Max F. Czapanskiy ◽  
Jason S. John ◽  
Judy St. Leger ◽  
Miriam Scadeng ◽  
...  

Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2s at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2s were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2s at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2368 ◽  
Author(s):  
Małgorzata Oszkinis-Golon ◽  
Marcin Frankowski ◽  
Leszek Jerzak ◽  
Andrzej Pukacz

Thirteen pit lakes of the Muskau Arch (Western Poland) were studied in the summer season of 2016. The lakes display great geomorphological and hydrochemical diversity. The aim of the study was to characterize temporal changes in the physicochemical conditions of the pit lakes over the last 30 years (1986–2016) and to determine the main factors influencing their evolution. All the lakes were characterized in terms of the same set of physicochemical parameters measured and used for comparative analysis with literature data from the years 1986 and 1992. The results showed significant temporal differentiation in terms of morphometric features and most of the physicochemical characteristics. pH, EC, Ca2+, Mg2+ and total Fe were among the most significantly differentiating parameters. A similar pattern of changes was found for most of the lakes, suggesting natural fluctuations. Despite the differences in values of thermal and oxygen profiles, there were also similarities in lake stratification. Additionally, meromictic conditions were found in 4 lakes. In some of the lakes a negative effect of neutralization and fertilization of the water was observed. Our results showed that the Muskau Arch lakes are subject to dynamic hydrogeological and hydrochemical changes. In addition to natural changes, human-caused transformations were among the key factors responsible for the differentiation of the physicochemical conditions.


2020 ◽  
Vol 17 (15) ◽  
pp. 4119-4134
Author(s):  
Christopher Gordon ◽  
Katja Fennel ◽  
Clark Richards ◽  
Lynn K. Shay ◽  
Jodi K. Brewster

Abstract. Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestration. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to measurements from gliders and mixed-layer floats. This study is the first documented attempt to estimate primary production from diurnal oxygen changes measured by Argo-type profiling floats, thus accounting for the whole euphotic zone. We first present a novel method for correcting measurement errors that result from the relatively slow response time of the oxygen optode sensor. This correction relies on an in situ determination of the sensor's effective response time. The method is conceptually straightforward and requires only two minor adjustments in current Argo data transmission protocols: (1) transmission of measurement time stamps and (2) occasional transmission of downcasts in addition to upcasts. Next, we present oxygen profiles collected by 10 profiling floats in the northern Gulf of Mexico, evaluate whether community production and respiration can be detected, and show evidence of internal oscillations influencing the diurnal oxygen signal. Our results show that profiling floats are capable of measuring diurnal oxygen variations although the confounding influence of physical processes does not permit a reliable estimation of biological rates in our dataset. We offer suggestions for recognizing and removing the confounding signals.


2020 ◽  
Vol 77 (5) ◽  
pp. 814-823 ◽  
Author(s):  
Lester L. Yuan ◽  
John R. Jones

Eutrophication increases hypoxia in lakes and reservoirs, causing deleterious effects on biological communities. Quantitative models would help managers develop effective strategies to address hypoxia issues, but most existing models are limited in their applicability to lakes with temporally resolved dissolved oxygen data. We describe a hierarchical Bayesian model that predicts dissolved oxygen in lakes based on a mechanistic understanding of the factors that influence the development of hypoxia during summer stratification. These factors include the days elapsed since stratification, dissolved organic carbon concentration, lake depth, and chlorophyll concentration. We demonstrate that the model can be fit to two datasets: one in which temporally resolved dissolved oxygen profiles were collected from 20 lakes in a single state and one in which single profiles were collected from 381 lakes across the United States. Analyses of these two datasets yielded similar relationships between volumetric oxygen demand and chlorophyll concentration, suggesting that the model structure appropriately represented the effects of eutrophication on oxygen depletion. Combining both datasets in a single model further improved the precision of predictions.


2020 ◽  
Vol 17 (8) ◽  
pp. 2315-2339 ◽  
Author(s):  
Karen F. Wishner ◽  
Brad Seibel ◽  
Dawn Outram

Abstract. Increasing deoxygenation (loss of oxygen) of the ocean, including expansion of oxygen minimum zones (OMZs), is a potentially important consequence of global warming. We examined present-day variability of vertical distributions of 23 calanoid copepod species in the Eastern Tropical North Pacific (ETNP) living in locations with different water column oxygen profiles and OMZ intensity (lowest oxygen concentration and its vertical extent in a profile). Copepods and hydrographic data were collected in vertically stratified day and night MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) tows (0–1000 m) during four cruises over a decade (2007–2017) that sampled four ETNP locations: Costa Rica Dome, Tehuantepec Bowl, and two oceanic sites further north (21–22∘ N) off Mexico. The sites had different vertical oxygen profiles: some with a shallow mixed layer, abrupt thermocline, and extensive very low oxygen OMZ core; and others with a more gradual vertical development of the OMZ (broad mixed layer and upper oxycline zone) and a less extensive OMZ core where oxygen was not as low. Calanoid copepod species (including examples from the genera Eucalanus, Pleuromamma, and Lucicutia) demonstrated different distributional strategies (implying different physiological characteristics) associated with this variability. We identified sets of species that (1) changed their vertical distributions and depth of maximum abundance associated with the depth and intensity of the OMZ and its oxycline inflection points; (2) shifted their depth of diapause; (3) adjusted their diel vertical migration, especially the nighttime upper depth; or (4) expanded or contracted their depth range within the mixed layer and upper part of the thermocline in association with the thickness of the aerobic epipelagic zone (habitat compression concept). These distribution depths changed by tens to hundreds of meters depending on the species, oxygen profile, and phenomenon. For example, at the lower oxycline, the depth of maximum abundance for Lucicutia hulsemannae shifted from ∼600 to ∼800 m, and the depth of diapause for Eucalanus inermis shifted from ∼500 to ∼775 m, in an expanded OMZ compared to a thinner OMZ, but remained at similar low oxygen levels in both situations. These species or life stages are examples of “hypoxiphilic” taxa. For the migrating copepod Pleuromamma abdominalis, its nighttime depth was shallow (∼20 m) when the aerobic mixed layer was thin and the low-oxygen OMZ broad, but it was much deeper (∼100 m) when the mixed layer and higher oxygen extended deeper; daytime depth in both situations was ∼300 m. Because temperature decreased with depth, these distributional depth shifts had metabolic implications. The upper ocean to mesopelagic depth range encompasses a complex interwoven ecosystem characterized by intricate relationships among its inhabitants and their environment. It is a critically important zone for oceanic biogeochemical and export processes and hosts key food web components for commercial fisheries. Among the zooplankton, there will likely be winners and losers with increasing ocean deoxygenation as species cope with environmental change. Changes in individual copepod species abundances, vertical distributions, and life history strategies may create potential perturbations to these intricate food webs and processes. Present-day variability provides a window into future scenarios and potential effects of deoxygenation.


2020 ◽  
Author(s):  
Christopher Gordon ◽  
Katja Fennel ◽  
Clark Richards ◽  
Lynn K. Shay ◽  
Jodi K. Brewster

Abstract. Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestration. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to measurements from gliders and mixed layer floats. This study is the first documented attempt to estimate primary production from diurnal oxygen changes measured by Argo-type profiling floats, thus accounting for the whole euphotic zone. We first present a novel method for correcting measurement errors that result from the relatively slow response time of the oxygen optode sensor. This correction relies on an in-situ determination of the sensor's effective response time. The method is conceptually straightforward and requires only two minor adjustments in current Argo data transmission protocols: (1) transmission of measurement time stamps, and (2) occasional transmission of downcasts in addition to upcasts. Next, we present oxygen profiles collected by 10 profiling floats in the northern Gulf of Mexico, evaluate whether community production and respiration can be detected, and show evidence of internal oscillations influencing the diurnal oxygen signal. Our results show that profiling floats are capable of measuring diurnal oxygen variations although the confounding influence of physical processes does not permit a reliable estimation of biological rates in our data set. We offer suggestions for recognizing and removing the confounding signals.


Biosensors ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 34 ◽  
Author(s):  
Brian Bradke ◽  
Bradford Everman

Photoplethysmography (PPG) is a valuable technique for noninvasively evaluating physiological parameters. However, traditional PPG devices have significant limitations in high-motion and low-perfusion environments. To overcome these limitations, we investigated the accuracy of a clinically novel PPG site using SPYDR®, a new PPG sensor suite, against arterial blood gas (ABG) measurements as well as other commercial PPG sensors at the finger and forehead in hypoxic environments. SPYDR utilizes a reflectance PPG sensor applied behind the ear, between the pinna and the hairline, on the mastoid process, above the sternocleidomastoid muscle, near the posterior auricular artery in a self-contained ear cup system. ABG revealed accuracy of SPYDR with a root mean square error of 2.61% at a 70–100% range, meeting FDA requirements for PPG sensor accuracy. Subjects were also instrumented with SPYDR, as well as finger and forehead PPG sensors, and pulse rate (PR) and oxygen saturation (SpO2) were measured and compared at various reduced oxygen profiles with a reduced oxygen breathing device (ROBD). SPYDR was shown to be as accurate as other sensors in reduced oxygen environments with a Pearson’s correlation >93% for PR and SpO2. In addition, SPYDR responded to changes in SpO2 up to 50 s faster than PPG measurements at the finger and forehead.


Sign in / Sign up

Export Citation Format

Share Document