Two decades of dynamic cone penetration testing in India

2021 ◽  
pp. 215-222
Author(s):  
V.S. Aggarwal
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Divyesh Rohit ◽  
Hemanta Hazarika ◽  
Tsubasa Maeda ◽  
Wa Ode Sumartini ◽  
Takaji Kokusho ◽  
...  

AbstractThe Sulawesi earthquake with a moment magnitude of Mw 7.5 struck the Central Sulawesi region of the Sulawesi Island, Indonesia, on September 28, 2018. The epicenter of the earthquake was located in the mountainous region of Donggala Regency, in the neck of the Minahasa Peninsula in the Central Sulawesi Province of Indonesia. Although the epicenter was located in Donggala Regency, the greatest devastating effects were observed about 70 km south of the epicenter in the Palu Valley. The event was the first of its kind to cause large-scale flowslides simultaneously at four key locations such as Balaroa, Petobo, Jono Oge, and Sibalaya with extensive ground displacements ranging from several hundred meters to more than 1 km. This article reviews the field observations of geotechnical failures and infrastructure damage caused by liquefaction resulting from the shallow strike-slip earthquake at Palu City, Donggala Regency, and Sigi Regency. A geo-spatial analysis was performed on data collected from aerial drone imagery, along with portable dynamic cone penetration testing (PDCPT) in the field. The investigation revealed a highly stratified ground with alternating soil layers of varying permeability and very low bearing resistance at shallow depths. The investigation also helped in assessing the extent of damage caused by geotechnical failure to the residential infrastructures, irrigation structures, and roads. Graphical Abstract


Author(s):  
Melika Sajadian ◽  
Ana Teixeira ◽  
Faraz S. Tehrani ◽  
Mathias Lemmens

Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-temporal monitoring and analysis of these deformations are necessary for sustainable development of cities. Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land deformations. Despite the combined advantages of these two methods, the relationship between them has not yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT measurements using machine learning techniques in an attempt to better predict land deformation.


Author(s):  
Dharma Wijewickreme ◽  
Thushara Jayasinghe

Abstract A systematic research program was undertaken with the objective of developing quantitative geotechnical parameters to support soil-pipe interaction assessment for buried pipelines in muskeg. For this purpose, a field geotechnical investigation program comprising cone penetration testing (SCPT) with shear wave velocity (Vs) measurements, electronic field vane shear testing (eVST), full-flow ball penetration testing (BPT), and pressuremeter testing (PMT), along with fixed-piston tube soil sampling was undertaken in a muskeg soil terrain. The data from field testing were initially interpreted to obtain typical stiffness and strength parameters for the subject soils. These parameters were then used to numerically simulate pressuremeter tests and the results were compared with those obtained from field pressuremeter testing; the intent was to calibrate a suitable constitutive model to represent the muskeg soil mass. These ascalibrated constitutive model was then applied on numerical models developed to simulate buried pipelines in muskeg soil subject to relative lateral ground movements. The work is aimed at developing a framework to generate soil restraint versus relative ground displacement relations (“soil springs”) to assess soil-pipe interaction of pipelines buried in muskeg soils. Initial results from the research are presented herein, with a comparison made between soil springs developed from numerical analyses and those generated from current practice guidelines.


Sign in / Sign up

Export Citation Format

Share Document