dynamic cone penetration
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 15)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 147 (12) ◽  
pp. 04021141
Author(s):  
Kyle M. Rollins ◽  
Jashod Roy ◽  
Adda Athanasopoulos-Zekkos ◽  
Dimitrios Zekkos ◽  
Sara Amoroso ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Divyesh Rohit ◽  
Hemanta Hazarika ◽  
Tsubasa Maeda ◽  
Wa Ode Sumartini ◽  
Takaji Kokusho ◽  
...  

AbstractThe Sulawesi earthquake with a moment magnitude of Mw 7.5 struck the Central Sulawesi region of the Sulawesi Island, Indonesia, on September 28, 2018. The epicenter of the earthquake was located in the mountainous region of Donggala Regency, in the neck of the Minahasa Peninsula in the Central Sulawesi Province of Indonesia. Although the epicenter was located in Donggala Regency, the greatest devastating effects were observed about 70 km south of the epicenter in the Palu Valley. The event was the first of its kind to cause large-scale flowslides simultaneously at four key locations such as Balaroa, Petobo, Jono Oge, and Sibalaya with extensive ground displacements ranging from several hundred meters to more than 1 km. This article reviews the field observations of geotechnical failures and infrastructure damage caused by liquefaction resulting from the shallow strike-slip earthquake at Palu City, Donggala Regency, and Sigi Regency. A geo-spatial analysis was performed on data collected from aerial drone imagery, along with portable dynamic cone penetration testing (PDCPT) in the field. The investigation revealed a highly stratified ground with alternating soil layers of varying permeability and very low bearing resistance at shallow depths. The investigation also helped in assessing the extent of damage caused by geotechnical failure to the residential infrastructures, irrigation structures, and roads. Graphical Abstract


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3085
Author(s):  
Sang Yeob Kim ◽  
Jong-Sub Lee ◽  
Dong-Ju Kim ◽  
Yong-Hoon Byun

Dynamic resistance, which can be used to express strength in the unit of stress and improve the reliability of the dynamic cone penetration test (DCPT), has been estimated by numerous methods. This study aims to compare different dynamic resistance estimation methods by using an instrumented dynamic cone penetrometer (IDCP). DCPTs are conducted using a standard dynamic cone penetrometer (DCP) and IDCP in the laboratory and field. Dynamic responses are obtained from the strain gauges and an accelerometer installed at the cone tip of the IDCP. The test results show that dynamic resistance is more efficient in distinguishing profiles than the dynamic cone penetration index. Among the methods to estimate the dynamic resistance at the cone tip, the force-velocity integration method and force integration method are more related to the conventional dynamic resistance considering the potential energy of the hammer than the force squared integration method. Additionally, the dynamic resistance estimated for a longer time period is more reliable, particularly for small driving rod lengths. Regarding the limitation of the dynamic response from an accelerometer in a previous study, the force-based dynamic resistance estimated for a longer time period can be used as the most reliable approach for further soil strength characterization.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5782
Author(s):  
Jong-Sub Lee ◽  
Yong-Hoon Byun

Subsurface characterization is essential for a successful infrastructure design and construction. This paper demonstrates the use of an instrumented cone penetrometer (ICP) for a dense layer characterization at two sites. The ICP consists of a cone tip and rods equipped with an accelerometer and four strain gauges, which allow dynamic driving, in addition to quasi-static pushing of the cone. The force and velocity of the cone are measured using the ICP instrumentation and compared with the N value, dynamic cone penetration index, and static cone resistance. A strong correlation has been observed between the total cone resistance estimated from the ICP and the dynamic cone penetration index and static cone resistance. After the correction of the dynamic cone resistance effect, the static component of the total cone resistance can be used as an alternative to a static cone resistance. This novel approach of soil resistance estimation using the ICP may be useful for dense layer characterization.


Sign in / Sign up

Export Citation Format

Share Document