Evolution of yield locus of polycrystalline metals subjected to large biaxial prestrain

2021 ◽  
pp. 281-286
Author(s):  
K.C. Chan ◽  
W.B. Lee
Author(s):  
S. Q. Xiao ◽  
S. Baden ◽  
A. H. Heuer

The avian eggshell is one of the most rapidly mineralizing biological systems known. In situ, 5g of calcium carbonate are crystallized in less than 20 hrs to fabricate the shell. Although there have been much work about the formation of eggshells, controversy about the nucleation and growth mechanisms of the calcite crystals, and their texture in the eggshell, still remain unclear. In this report the microstructure and microchemistry of avian eggshells have been analyzed using transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS).Fresh white and dry brown eggshells were broken and fixed in Karnosky's fixative (kaltitanden) for 2 hrs, then rinsed in distilled H2O. Small speckles of the eggshells were embedded in Spurr medium and thin sections were made ultramicrotome.The crystalline part of eggshells are composed of many small plate-like calcite grains, whose plate normals are approximately parallel to the shell surface. The sizes of the grains are about 0.3×0.3×1 μm3 (Fig.l). These grains are not as closely packed as man-made polycrystalline metals and ceramics, and small gaps between adjacent grains are visible indicating the absence of conventional grain boundaries.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


1986 ◽  
Vol 108 (4) ◽  
pp. 313-320 ◽  
Author(s):  
D. E. Helling ◽  
A. K. Miller ◽  
M. G. Stout

The multiaxial yield behaviors of 1100-0 aluminum, 70:30 brass, and an overaged 2024 aluminum alloy (2024-T7) have been investigated for a variety of prestress histories involving combinations of normal and shear stresses. Von Mises effective prestrains were in the range of 1.2–32%. Prestress paths were chosen in order to investigate the roles of prestress and prestrain direction on the nature of small-strain offset (ε = 5 × 10−6) yield loci. Particular attention was paid to the directionality, i.e., translation and distortion, of the yield locus. A key result, which was observed in all three materials, was that the final direction of the prestrain path strongly influences the distortions of the yield loci. Differences in the yield locus behavior of the three materials were also observed: brass and the 2024-T7 alloy showed more severe distortions of the yield locus and a longer memory of their entire prestrain history than the 1100-0 aluminum. In addition, more “kinematic” translation of the subsequent yield loci was observed in brass and 2024-T7 than in 1100-0 aluminum. The 2024-T7 differed from the other materials, showing a yield locus which decreased in size subsequent to plastic straining. Finally, the implications of these observations for the constitutive modeling of multiaxial material behavior are discussed.


Sign in / Sign up

Export Citation Format

Share Document