echo simulation
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2083 (3) ◽  
pp. 032052
Author(s):  
Huixiang Liu ◽  
Yang Liu ◽  
Peili Xi ◽  
Jie Chen ◽  
Wei Yang ◽  
...  

Abstract The atmosphere is a very important factor that affects the accuracy of X-band SAR image registration, and the ionosphere effect has the most intricate influence. In response to this problem, this paper introduces the mathematical model of ionospheric dispersion effect and scintillation effect. Then, echo simulation, imaging processing, and image registration are used to calculate the image offset caused by the ionosphere, which can determine whether the ionosphere effect needs to be compensated during image registration. Simulation experimental results show that in the X-band image registration, the dispersion effect needs to be compensated, and the impact of the scintillation effect can be ignored.


Author(s):  
Qutie JieLa ◽  
Haijiang Wang ◽  
Shipeng Hu ◽  
Jiahui Zhu ◽  
Mengqing Gao

Abstract Using the scattering characteristics of particles to simulate the radar echo can supply the test signals close to the real precipitation echo for the weather radar and save the time and cost of the research and development and maintenance of the weather radar. In this paper, the precipitation echo of weather radar is simulated based on the theoretical basis that the falling raindrops have a shape well approximated by an oblate spheroid in the atmosphere. The Marshal-Palmer distribution is applied to describe the raindrop spectrum distribution of precipitation particles. It is assumed that the raindrop particles of different sizes have the random distribution in the radar resolution volume, and then the spatial distribution of precipitation particles in the resolution volume is modeled. The echo signals of horizontal and vertical polarization channels of dual-polarization weather radar are obtained by vector superposition of backscattering echoes of each particle. The experimental results show that this method can describe the microphysical characteristics of precipitation particles more completely and can be used to test the signal processing module of dual-polarization Doppler weather radar.


Sign in / Sign up

Export Citation Format

Share Document