Welded KK-joints of circular hollow sections in highway bridges

2008 ◽  
pp. 381-387
Author(s):  
M Euler ◽  
U Kuhlmann
Keyword(s):  
PCI Journal ◽  
1984 ◽  
Vol 29 (3) ◽  
pp. 44-73 ◽  
Author(s):  
Harold J. Jobse ◽  
Saad E. Moustafa

PCI Journal ◽  
2004 ◽  
Vol 49 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Nabil F. Grace ◽  
S. B. Singh ◽  
Mina M. Shinouda ◽  
Sunup S. Mathew

2006 ◽  
Vol 92 (8) ◽  
pp. 26-33 ◽  
Author(s):  
Ichiro Okura ◽  
Syogo Osawa ◽  
Masakazu Takeno ◽  
Nobuyasu Hagisawa ◽  
Toshiyuki Ishikawa
Keyword(s):  

Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4336
Author(s):  
Piervincenzo Rizzo ◽  
Alireza Enshaeian

Bridge health monitoring is increasingly relevant for the maintenance of existing structures or new structures with innovative concepts that require validation of design predictions. In the United States there are more than 600,000 highway bridges. Nearly half of them (46.4%) are rated as fair while about 1 out of 13 (7.6%) is rated in poor condition. As such, the United States is one of those countries in which bridge health monitoring systems are installed in order to complement conventional periodic nondestructive inspections. This paper reviews the challenges associated with bridge health monitoring related to the detection of specific bridge characteristics that may be indicators of anomalous behavior. The methods used to detect loss of stiffness, time-dependent and temperature-dependent deformations, fatigue, corrosion, and scour are discussed. Owing to the extent of the existing scientific literature, this review focuses on systems installed in U.S. bridges over the last 20 years. These are all major factors that contribute to long-term degradation of bridges. Issues related to wireless sensor drifts are discussed as well. The scope of the paper is to help newcomers, practitioners, and researchers at navigating the many methodologies that have been proposed and developed in order to identify damage using data collected from sensors installed in real structures.


Sign in / Sign up

Export Citation Format

Share Document