Glider representation theory of a chain of finite groups

2019 ◽  
pp. 63-98
Author(s):  
Frederik Caenepeel ◽  
Fred Van Oystaeyen
2009 ◽  
Author(s):  
Tullio Ceccherini-Silberstein ◽  
Fabio Scarabotti ◽  
Filippo Tolli

1955 ◽  
Vol 7 ◽  
pp. 490-508 ◽  
Author(s):  
D. G. Higman

We shall consider here two generalizations to rings of the concept of induced representation as it occurs in the representation theory of finite groups (6).If A is a ring, S a subring of A, we shall associate with each S-module M an induced pair (I(M), K) consisting of an A -modulo I(M) and an S-homomorphism K: M → I(M).


1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


1959 ◽  
Vol 11 ◽  
pp. 59-60 ◽  
Author(s):  
Hirosi Nagao

Let G be a finite group of order g, andbe an absolutely irreducible representation of degree fμ over a field of characteristic zero. As is well known, by using Schur's lemma (1), we can prove the following orthogonality relations for the coefficients :1It is easy to conclude from (1) the following orthogonality relations for characters:whereand is 1 or 0 according as t and s are conjugate in G or not, and n(t) is the order of the normalize of t.


1996 ◽  
Vol 120 (4) ◽  
pp. 589-595
Author(s):  
D. J. Benson

In the modular representation theory of finite groups, much recent effort has gone into describing cohomological properties of the category of finitely generated modules. In recent joint work of the author with Jon Carlson and Jeremy Rickard[3], it has become clear that for some purposes the finiteness restriction is undesirable. In particular, in the quotient category of kG-modules by the subcategory of modules of less than maximal complexity, it turns out that finitely generated modules can have infinitely generated summands, and that including these summands in the category repairs the lack of Krull–Schmidt property.


Sign in / Sign up

Export Citation Format

Share Document