The Iodide Transport Defect

Author(s):  
Geraldo Medeiros-Neto
2021 ◽  
Vol 12 ◽  
Author(s):  
Maria C. Opazo ◽  
Juan Carlos Rivera ◽  
Pablo A. Gonzalez ◽  
Susan M. Bueno ◽  
Alexis M. Kalergis ◽  
...  

Fetus and infants require appropriate thyroid hormone levels and iodine during pregnancy and lactation. Nature endorses the mother to supply thyroid hormones to the fetus and iodine to the lactating infant. Genetic variations on thyroid proteins that cause dyshormonogenic congenital hypothyroidism could in pregnant and breastfeeding women impair the delivery of thyroid hormones and iodine to the offspring. The review discusses maternal genetic variations in thyroid proteins that, in the context of pregnancy and/or breastfeeding, could trigger thyroid hormone deficiency or iodide transport defect that will affect the proper development of the offspring.


1999 ◽  
Vol 8 (1) ◽  
pp. 35-41
Author(s):  
Hirotake Sawada ◽  
Shinobu Inoue ◽  
Tohru Sugimoto ◽  
Shigeki Nagamachi ◽  
Shinji Kosugi

1991 ◽  
Vol 124 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Thomas Vulsma ◽  
Johan A. Rammeloo ◽  
Margareth H. Gons ◽  
Jan J. M. de Vijlder

Abstract. When discovered by neonatal screening, a thyroid dyshormonogenesis is usually not recognized as a goitre. Especially a total iodide transport defect can easily be misclassified as thyroid agenesis, since radionuclide imaging cannot visualize the thyroid. We present the only iodide transport defect ever discovered in the Netherlands, the 35th reported in the literature, and the first one found exclusively as a result of neonatal screening. We demonstrate that iodide transport defects, in common with organification and deiodinase defects, can be distinguished from thyroid dysgenesis by demonstrating a normal or enlarged thyroid ultrasound image, and especially by measuring very high serum thyroglobulin levels (above 1000 pmol/l). In the presented case, an iodide-123 saliva-to-serum ratio near unity completed the etiologic classification. Measurement of serum thyroglobulin levels, in combination with thyroid ultrasound imaging, will improve the early identification of hereditary types of congenital hypothyroidism, and especially iodide transport defects, in patients found by neonatal thyroid screening.


2010 ◽  
Vol 2010 ◽  
pp. 1-3 ◽  
Author(s):  
Wakako Jo ◽  
Katsura Ishizu ◽  
Kenji Fujieda ◽  
Toshihiro Tajima

Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH) due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD). Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS) gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.


Thyroid ◽  
2000 ◽  
Vol 10 (6) ◽  
pp. 471-474 ◽  
Author(s):  
Hirokazu Fujiwara ◽  
Ke-ita Tatsumi ◽  
Susumu Tanaka ◽  
Masahiro Kimura ◽  
Osamu Nose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document