Design of shaking table tests on atrium-style subway station models under seismic excitations

Author(s):  
Z.M. Zhang ◽  
Y. Yuan ◽  
E. Bilotta ◽  
H.T. Yu ◽  
H.L. Zhao
2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.


Author(s):  
Haeyoung Kim ◽  
Kunio Mizutani ◽  
Syojiro Motoyui

During the Great East Japan Earthquake of March 2011, nonstructural components, such as pipe systems, ducts, cable racks and ceilings were severely damaged while main structural members in the building were not damaged seriously. Pipes, cable racks, apparatus and ducts’ hanger bolts were ruptured causing the equipment to fall down. Because of these damages, buildings cannot be used for a long period of time and one person was killed by pipe’s falling in Japan. In this study, the behaviors of nonstructural components are investigated by conducting shaking table tests to verify the cause of damage. More specifically, damage to hanger bolts is investigated by simulating its rupturing mechanism through shaking table test. To simulate the real installation condition of nonstructural components, apparatus-duct-pipe system supported by hanger bolts is selected as specimen. Roof floor response wave at the actual 5-story steel building under the Great East Japan Earthquake and sweep wave are used for the input waves. The maximum response acceleration was about 4 G in X direction under response wave 75% and the damage occurred at the metal fitting which is the connection part between braces and hanger bolt. And without installing braces, the upper hanger bolts at the fixed supporting part were ruptured easily since the natural frequency of the specimen closed to those of target building during excitations and the response became huge.


2011 ◽  
Vol 94-96 ◽  
pp. 1771-1781
Author(s):  
Guo Xing Chen ◽  
Xi Zuo ◽  
Zhi Hua Wang ◽  
Xiu Li Du ◽  
Cheng Zhi Qi

Based on the test data of shaking table tests of subway station structure in liquefiable ground under both near-field and far-field earthquakes, the spatial effects of dynamic pore water pressure (PWP)and peak ground acceleration (PGA)of liquefiable ground as well as peak strain response of the subway station structure are analyzed. The results show that there exists time-lag phenomenon of dynamic PWP ratio of each measuring point on different observation planes. The characteristic of input ground motion has a noticeable influence on the spatial effect of dynamic PWP ratio. The PWP ratio obtained on the major observation plane presents to be larger than that on the minor one when under far-field Songpan wave. Meanwhile, the peak acceleration of measuring points on both major and minor planes increase with the growing peak acceleration of earthquake. The law of PGA and frequency spectral character of measuring points on different observation planes or at different depth varies with each other, and there present remarkable spatial effect. The peak strain of central cylinders at the top and middle floors on the major plane appear larger than that on the minor planes. However, the peak strain of central cylinders at the bottom floor are more remarkable than that of the top and middle floors, There are sharp contrasts among the peak strain responses in different spatial positions of the station structure.


Sign in / Sign up

Export Citation Format

Share Document