Experimental Study on the Seismic Response of Subway Station in Soft Ground

2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ling-Yun Peng ◽  
Ying-Jie Kang ◽  
Zong-Rui Lai ◽  
Yu-Ke Deng

A parameter optimization design method is proposed for multiple coal bucket dampers (CBDs) to reduce the seismic response of coal-fired power plants. To test the damping effect of the optimized CBDs, a 1 : 30 scale shaking table test model of a power plant structure was fabricated. A comparative testing program was conducted using three seismic excitations on a model with and without CBDs. A finite element analysis model, replicating the conditions of the shaking table test, was constructed for comparison, and the shock absorption effects of CBDs subjected to 22 groups of far-field seismic action and 28 groups of near-field seismic action were analyzed. Finally, the influence of changes in the structural period on the seismic response of the CBD-equipped structure was studied. The results indicate that the use of CBDs in a coal-fired power plant structure, based on an optimization design method for multiple-tuned mass dampers (MTMDs), results in a significant reduction in the structure displacement response, displays a certain discreteness under different excitations, and maintains a certain damping stability even as the structural period changes. Overall, the use of CBDs is a promising prospect for improving the seismic performance of coal-fired power plant structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Honggang Wu ◽  
Hao Lei ◽  
Tianwen Lai

This paper presents the seismic dynamic response and spectrum characteristics of an orthogonal overlapped tunnel by shaking table tests. First, a prototype of the engineering and shaking table test device, which was used to design details of the experiment, was developed. Then, the sensors used in the test were selected, and the measurement points were arranged. Subsequently, the Wenchuan seismic wave with horizontal direction in different peak ground accelerations was inputted into the model, followed by a short analysis of the seismic response of the overlapped tunnel in the shaking table test as well as the distribution of the peak acceleration. Throughout the studies, the model exhibited obvious deformation stages during the seismic wave loading process, which can be divided into elastic, plastic, plastic enhancement, and failure stage. In particular, the time- and frequency-domain characteristics of the key parts of the tunnel were discussed in detail by using the continuous wavelet transform (CWT) based on the Morlet wavelet as the basis function. We found that the acceleration response was more intense within 25–60 s after the seismic wave was inputted. Furthermore, owing to “the superposition effect,” the seismic response at the crown of the under-crossing tunnel was stronger than that at the invert of the upper-span tunnel. The low and medium frequencies in the transformation of small scales (5–20) significantly affected the overlapped tunnel. These results elucidate the seismic dynamic response of the overlapped tunnel and provide guidance for the design of stabilizing structures for reinforcing tunnels against earthquakes.


2021 ◽  
pp. 136943322199329
Author(s):  
Zhiyi Chen ◽  
Pengfei Huang ◽  
Wei Chen

A series of shaking table tests were carried out to investigate the seismic response characteristics of a multi-story subway station. Dynamic responses, including accelerations of the soils and the underground structure, layer drift, dynamic earth pressure, and lateral deformation of soils were recorded and analyzed. Several seismic characteristics of multi-story subway station structures are figured out. It is found that in addition to the racking deformation, the rotation vibration is observed for the multi-story subway station subjected to acceleration waves. From the viewpoint of frequency, the low-frequency component and high-frequency component of the acceleration response of the subway station represent the translation and rotation component of the multi-story subway structure, respectively. In addition, the rotation vibration of the deep-depth structure leads to the local squeezing and detachment from the surrounding soils alternately at both top and bottom ends of the sidewalls. This results in the hump-shaped distribution of dynamic earth pressure. The racking deformation of the multi-story subway station has a linear relationship with the dynamic earth pressure at a certain area along the sidewall, where the top of hump-shaped distribution of dynamic earth pressure is.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tingjin Liu ◽  
Siyuan Zheng ◽  
Xinwei Tang ◽  
Weixing Xu

In this paper, a shaking table test was conducted to investigate the seismic response of the large-span and column-free subway station in the upper-soft and lower-hard strata. The acceleration of the structure and the soil, the dynamic soil pressure, and the strain response of the subway station were obtained and analyzed. The results demonstrate the reasonable test design as the boundary effect was eliminated. The seismic response of the structure and soil became more severe as the acceleration amplitude of the input motion increased. It is indicated that possible shear damage of the soil and irreversible plastic deformation of the structure might have occurred as the test proceeded. The soft clay had a greater effect on the structure than that of the artificial rock. For the model structure, the tensile strain amplitude in the support region was larger than that in the midspan region. The support regions of the roof slab, lateral wall, and middle slab were the vulnerable components of the model structure during earthquakes.


Author(s):  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Shigekazu Aida ◽  
Akihito Otani ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple-excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model (89.1mm in diameter and 5.5mm thickness). The piping model was fixed to three shaking tables, meaning three. Different inputs were possible. By the shaking test, dynamic behavior under multiple excitations was confirmed, and data to verify multiple-excitation analysis was obtained.


2012 ◽  
Vol 193-194 ◽  
pp. 1278-1283
Author(s):  
Hu Bing Tu ◽  
Yun Wang ◽  
Yuang Tan ◽  
Song Lin Xu ◽  
Jun Teng

“Code for seismic design of buildings”(GB50011-2010)prescribes that for the structure above the isolation layer, seismic intensity can be reduced less than 1 degree when the horizontal damping coefficient is not less than 0.40. Research of seismic performance between non-isolated and isolated frame structures designed based on this rule has not been found. In this paper, 1/3 scale models of a non-isolated and an isolated frame structure are built and shaking table test is conducted to investigate seismic response and damage of structures. Test reveals that isolated structure occurs little damage under different seismic intensity, while damage of non-isolated structure is gradually increasing with the seismic intensity increases and the location of damage is mainly concentrated in the beam end.


2011 ◽  
Vol 368-373 ◽  
pp. 1338-1345
Author(s):  
Xi Zuo ◽  
Guo Xing Chen ◽  
Zhi Hua Wang ◽  
Xiu Li Du

Based on the test data of shaking table tests of subway station structure in soft ground under both near-field and far-field earthquakes, the spatial effects of peak ground acceleration (PGA) of soft ground as well as peak strain response of the subway station structure are analyzed. The results show that the peak acceleration of measuring points on both major and minor planes increases with the growing peak acceleration of earthquake. The law of PGA and frequency spectral character of measuring points on different observation planes or at different depth varies with each other, and there presents remarkable spatial effect. The peak strain of central cylinders on the major plane appears larger than that on the minor planes. There are sharp contrasts among the peak strain responses in different spatial positions of the station structure.


Sign in / Sign up

Export Citation Format

Share Document