subway station
Recently Published Documents


TOTAL DOCUMENTS

784
(FIVE YEARS 278)

H-INDEX

27
(FIVE YEARS 7)

2022 ◽  
Vol 135 ◽  
pp. 104114
Author(s):  
Ping Xie ◽  
Rongjun Zhang ◽  
Junjie Zheng ◽  
Ziqian Li

2022 ◽  
Vol 120 ◽  
pp. 104291
Author(s):  
Junbin Yang ◽  
Minzhang Liu ◽  
Huan Zhang ◽  
Wandong Zheng ◽  
Shijun You ◽  
...  

2022 ◽  
Vol 119 ◽  
pp. 104255
Author(s):  
Zhidong Gao ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Weiwei Wang ◽  
Xiuli Du

2021 ◽  
Author(s):  
Xiao-Xia Yang ◽  
Hai-Long Jiang ◽  
Yuan-Lei Kang ◽  
Yi Yang ◽  
Yong-Xing Li ◽  
...  

Abstract Under the background of Covid-19 sweeping the world, safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus. Based on the social force model and the minimum cost model, the movement and path selection behavior of passengers in the subway station are modeled, and a strategy for passenger flow management to maintain a safe social distance is put forward. Take Qingdao Jinggangshan Road subway station of China as the simulation scene, the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate. Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection. By comparing the evacuation process of passengers under different initial densities, it is found that the greater the initial density of passengers, the longer the passengers are at risk social distance. In the process of passenger emergency evacuation, the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density, which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval. The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures, and provide theoretical support for the operation and management of subway station under the epidemic situation.


2021 ◽  
Vol 11 (24) ◽  
pp. 11927
Author(s):  
Huafei He ◽  
Zhaoping Li

The seismic response of a fabricated subway station is a complex structural connection problem that depends on the mechanical properties of the joints. In order to obtain the optimal joint distribution of a fabricated station structure under earthquake action, three finite element models of a single ring structure of fabricated subway stations assembled with seven, five, and four prefabricated components were proposed. Seismic wave characteristics, peak acceleration, and coupled horizontal and vertical seismic components were considered to study the seismic response of the fabricated subway station structure with different forms of the joint distribution. The dynamic time history method was used to analyze the seismic response in three aspects: structure plastic strain, interlayer relative deformation, and internal force. The damage indexes and residual strength indexes of the joints were offered based on the concrete damage index to evaluate the joints’ damage degree. The results showed that the joints of the vault or bottom plate had little influence on the seismic response of the fabricated station structure. The sidewall joints had the obvious seismic response and the most severe damage under horizontal ground motion or coupled ground motion, which were the weak joints of the fabricated station structure. The existence of vertical ground motion aggravated the damage degree of sidewall joints, making the damage occurrence time of sidewall joints earlier and the damage end time extended. On the premise of meeting the mechanical load and site requirements, an assembly scheme with fewer prefabricated components can be selected.


Sign in / Sign up

Export Citation Format

Share Document