Simulation of buoyancy-driven fracture propagation using the displacement discontinuity boundary element method

Author(s):  
J.A.L. Napier ◽  
E. Detournay
2005 ◽  
Vol 73 (4) ◽  
pp. 525-535 ◽  
Author(s):  
Xiangqiao Yan

This paper presents a numerical approach to modeling a general system containing multiple interacting cracks and voids in an infinite elastic plate under remote uniform stresses. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks and voids, the original problem is divided into a homogeneous problem (the one without cracks and voids) subjected to remote loads and a multiple void-crack problem in an unloaded body with applied tractions on the surfaces of cracks and voids. Thus the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author. Test examples are included to illustrate that the numerical approach is very simple and effective for analyzing multiple crack/void problems in an infinite elastic plate. Specifically, the numerical approach is used to study the microdefect-finite main crack linear elastic interaction. In addition, complex crack problems in infinite/finite plate are examined to test further the accuracy and robustness of the boundary element method.


2003 ◽  
Vol 1849 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Bjorn Birgisson ◽  
Chote Soranakom ◽  
John A. L. Napier ◽  
Reynaldo Roque

A displacement discontinuity boundary element method is presented to explicitly model the microstructure of asphalt mixtures and to predict their tensile strength and fracture energy density. The loading response of three mixtures was simulated to assess the mechanics of fracture in the Superpave indirect tension test. The predicted tensile strength and fracture energy density of three samples were comparable with the test results for the samples. The predicted crack initiation and crack propagation patterns are consistent with observed cracking behavior. The results also imply that fracture in mixtures can be modeled effectively using a micromechanical approach that allows for crack growth both along aggregate surfaces and through the aggregates. Finally, the nonlinear Mohr–Coulomb type of failure envelope used to model the mastic appears to result in reasonable predictions. It can be concluded that the explicit fracture modeling with the displacement discontinuity boundary element method has the potential to evaluate the mechanics of fracture in asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document