Big Data Exploration to Examine Aggressive Driving Behavior in the Era of Smart Cities

2018 ◽  
pp. 163-182
Author(s):  
Arash Jahangiri ◽  
Sahar Ghanipoor Machiani ◽  
Vahid Balali
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Subramanian Arumugam ◽  
R. Bhargavi

Abstract The emergence and growth of connected technologies and the adaptation of big data are changing the face of all industries. In the insurance industry, Usage-Based Insurance (UBI) is the most popular use case of big data adaptation. Initially UBI is started as a simple unitary Pay-As-You-Drive (PAYD) model in which the classification of good and bad drivers is an unresolved task. PAYD is progressed towards Pay-How-You-Drive (PHYD) model in which the premium is charged for the personal auto insurance depending on the post-trip analysis. Providing proactive alerts to guide the driver during the trip is the drawback of the PHYD model. PHYD model is further progressed towards Manage-How-You-Drive (MHYD) model in which the proactive engagement in the form of alerts is provided to the drivers while they drive. The evolution of PAYD, PHYD and MHYD models serve as the building blocks of UBI and facilitates the insurance industry to bridge the gap between insurer and the customer with the introduction of MHYD model. Increasing number of insurers are starting to launch PHYD or MHYD models all over the world and widespread customer adaptation is seen to improve the driver safety by monitoring the driving behavior. Consequently, the data flow between an insurer and their customers is increasing exponentially, which makes the need for big data adaptation, a foundational brick in the technology landscape of insurers. The focus of this paper is to perform a detailed survey about the categories of MHYD. The survey results in the need to address the aggressive driving behavior and road rage incidents of the drivers during short-term and long-term driving. The exhaustive survey is also used to propose a solution that finds the risk posed by aggressive driving and road rage incidents by considering the behavioral and emotional factors of a driver. The outcome of this research would help the insurance industries to assess the driving risk more accurately and to propose a solution to calculate the personalized premium based on the driving behavior with most importance towards prevention of risk.


2015 ◽  
Author(s):  
Fahimeh Tabatabaei ◽  
Tahir Wani ◽  
Nastran Hajiheidari
Keyword(s):  
Big Data ◽  

2021 ◽  
Vol 24 ◽  
pp. 100192
Author(s):  
Mariagrazia Fugini ◽  
Jacopo Finocchi ◽  
Paolo Locatelli

2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


Sign in / Sign up

Export Citation Format

Share Document