Automatic Construction of Cloud Computing Infrastructures in Remote Sensing

2019 ◽  
pp. 191-205
Author(s):  
Lizhe Wang ◽  
Jining Yan ◽  
Yan Ma
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Li ◽  
Jiawei Wang ◽  
Liangyan Yang ◽  
Huping Ye

AbstractSri Lanka is an important hub connecting Asia-Africa-Europe maritime routes. It receives abundant but uneven spatiotemporal distribution of rainfall and has evident seasonal water shortages. Monitoring water area changes in inland lakes and reservoirs plays an important role in guiding the development and utilisation of water resources. In this study, a rapid surface water extraction model based on the Google Earth Engine remote sensing cloud computing platform was constructed. By evaluating the optimal spectral water index method, the spatiotemporal variations of reservoirs and inland lakes in Sri Lanka were analysed. The results showed that Automated Water Extraction Index (AWEIsh) could accurately identify the water boundary with an overall accuracy of 99.14%, which was suitable for surface water extraction in Sri Lanka. The area of the Maduru Oya Reservoir showed an overall increasing trend based on small fluctuations from 1988 to 2018, and the monthly area of the reservoir fluctuated significantly in 2017. Thus, water resource management in the dry zone should focus more on seasonal regulation and control. From 1995 to 2015, the number and area of lakes and reservoirs in Sri Lanka increased to different degrees, mainly concentrated in arid provinces including Northern, North Central, and Western Provinces. Overall, the amount of surface water resources have increased.


2017 ◽  
Vol 98 (11) ◽  
pp. 2397-2410 ◽  
Author(s):  
Justin L. Huntington ◽  
Katherine C. Hegewisch ◽  
Britta Daudert ◽  
Charles G. Morton ◽  
John T. Abatzoglou ◽  
...  

Abstract The paucity of long-term observations, particularly in regions with heterogeneous climate and land cover, can hinder incorporating climate data at appropriate spatial scales for decision-making and scientific research. Numerous gridded climate, weather, and remote sensing products have been developed to address the needs of both land managers and scientists, in turn enhancing scientific knowledge and strengthening early-warning systems. However, these data remain largely inaccessible for a broader segment of users given the computational demands of big data. Climate Engine (http://ClimateEngine.org) is a web-based application that overcomes many computational barriers that users face by employing Google’s parallel cloud-computing platform, Google Earth Engine, to process, visualize, download, and share climate and remote sensing datasets in real time. The software application development and design of Climate Engine is briefly outlined to illustrate the potential for high-performance processing of big data using cloud computing. Second, several examples are presented to highlight a range of climate research and applications related to drought, fire, ecology, and agriculture that can be rapidly generated using Climate Engine. The ability to access climate and remote sensing data archives with on-demand parallel cloud computing has created vast opportunities for advanced natural resource monitoring and process understanding.


Author(s):  
Yassine Sabri ◽  
Aouad Siham

Multi-area and multi-faceted remote sensing (SAR) datasets are widely used due to the increasing demand for accurate and up-to-date information on resources and the environment for regional and global monitoring. In general, the processing of RS data involves a complex multi-step processing sequence that includes several independent processing steps depending on the type of RS application. The processing of RS data for regional disaster and environmental monitoring is recognized as computationally and data demanding.Recently, by combining cloud computing and HPC technology, we propose a method to efficiently solve these problems by searching for a large-scale RS data processing system suitable for various applications. Real-time on-demand service. The ubiquitous, elastic, and high-level transparency of the cloud computing model makes it possible to run massive RS data management and data processing monitoring dynamic environments in any cloud. via the web interface. Hilbert-based data indexing methods are used to optimally query and access RS images, RS data products, and intermediate data. The core of the cloud service provides a parallel file system of large RS data and an interface for accessing RS data from time to time to improve localization of the data. It collects data and optimizes I/O performance. Our experimental analysis demonstrated the effectiveness of our method platform.


Sign in / Sign up

Export Citation Format

Share Document