System Configuration

Author(s):  
David G. Johnson
Keyword(s):  
Computers ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Andrew Jones ◽  
Jeremy Straub

Self-replicating robot systems (SRRSs) are a new prospective paradigm for robotic exploration. They can potentially facilitate lower mission costs and enhance mission capabilities by allowing some materials, which are needed for robotic system construction, to be collected in situ and used for robot fabrication. The use of a self-replicating robot system can potentially lower risk aversion, due to the ability to potentially replenish lost or damaged robots, and may increase the likelihood of mission success. This paper proposes and compares system configurations of an SRRS. A simulation system was designed and is used to model how an SRRS performs based on its system configuration, attributes, and operating environment. Experiments were conducted using this simulation and the results are presented.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Ziqian He ◽  
Kun Yin ◽  
Kuan-Hsu Fan-Chiang ◽  
Shin-Tson Wu

The Maxwellian view offers a promising approach to overcome the vergence-accommodation conflict in near-eye displays, however, its pinhole-like imaging naturally limits the eyebox size. Here, a liquid crystal polymer-based Dammann grating with evenly distributed energy among different diffraction orders is developed to enlarge the eyebox of Maxwellian view displays via pupil replication. In the experiment, a 3-by-3 Dammann grating is designed and fabricated, which exhibits good efficiency and high brightness uniformity. We further construct a proof-of-concept Maxwellian view display breadboard by inserting the Dammann grating into the optical system. The prototype successfully demonstrates the enlarged eyebox and full-color operation. Our work provides a promising route of eyebox expansion in Maxwellian view displays while maintaining full-color operation, simple system configuration, compactness, and lightweight.


Sign in / Sign up

Export Citation Format

Share Document