scholarly journals Simulation and Analysis of Self-Replicating Robot Decision-Making Systems

Computers ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Andrew Jones ◽  
Jeremy Straub

Self-replicating robot systems (SRRSs) are a new prospective paradigm for robotic exploration. They can potentially facilitate lower mission costs and enhance mission capabilities by allowing some materials, which are needed for robotic system construction, to be collected in situ and used for robot fabrication. The use of a self-replicating robot system can potentially lower risk aversion, due to the ability to potentially replenish lost or damaged robots, and may increase the likelihood of mission success. This paper proposes and compares system configurations of an SRRS. A simulation system was designed and is used to model how an SRRS performs based on its system configuration, attributes, and operating environment. Experiments were conducted using this simulation and the results are presented.

2021 ◽  
Vol 11 (4) ◽  
pp. 1448
Author(s):  
Wenju Mao ◽  
Zhijie Liu ◽  
Heng Liu ◽  
Fuzeng Yang ◽  
Meirong Wang

Multi-robots have shown good application prospects in agricultural production. Studying the synergistic technologies of agricultural multi-robots can not only improve the efficiency of the overall robot system and meet the needs of precision farming but also solve the problems of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting from the point of view of an agricultural multiple robot system architectures, this paper reviews the representative research results of five synergistic technologies of agricultural multi-robots in recent years, namely, environment perception, task allocation, path planning, formation control, and communication, and summarizes the technological progress and development characteristics of these five technologies. Finally, because of these development characteristics, it is shown that the trends and research focus for agricultural multi-robots are to optimize the existing technologies and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots, hybrid path planning and formation reconstruction. While synergistic technologies of agricultural multi-robots are extremely challenging in production, in combination with previous research results for real agricultural multi-robots and social development demand, we conclude that it is realistic to expect automated multi-robot systems in the future.


2021 ◽  
Author(s):  
Ching-Wei Chuang ◽  
Harry H. Cheng

Abstract In the modern world, building an autonomous multi-robot system is essential to coordinate and control robots to help humans because using several low-cost robots becomes more robust and efficient than using one expensive, powerful robot to execute tasks to achieve the overall goal of a mission. One research area, multi-robot task allocation (MRTA), becomes substantial in a multi-robot system. Assigning suitable tasks to suitable robots is crucial in coordination, which may directly influence the result of a mission. In the past few decades, although numerous researchers have addressed various algorithms or approaches to solve MRTA problems in different multi-robot systems, it is still difficult to overcome certain challenges, such as dynamic environments, changeable task information, miscellaneous robot abilities, the dynamic condition of a robot, or uncertainties from sensors or actuators. In this paper, we propose a novel approach to handle MRTA problems with Bayesian Networks (BNs) under these challenging circumstances. Our experiments exhibit that the proposed approach may effectively solve real problems in a search-and-rescue mission in centralized, decentralized, and distributed multi-robot systems with real, low-cost robots in dynamic environments. In the future, we will demonstrate that our approach is trainable and can be utilized in a large-scale, complicated environment. Researchers might be able to apply our approach to other applications to explore its extensibility.


Author(s):  
Haibo Feng ◽  
Yanwu Zhai ◽  
Yili Fu

Purpose Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to effectively improve the visualization of surgical robot systems for relatively complex surgical procedures. Design/methodology/approach In this paper, a new master-slave magnetic anchoring vision robotic system for SPL surgery was proposed. A lighting distribution analysis for the imaging unit of the vision robot was carried out to guarantee illumination uniformity in the workspace during SPL surgery. Moreover, cleaning force for the lens of the camera was measured to assess safety for an abdominal wall, and performance assessment of the system was performed. Findings Extensive experimental results for illumination, control, cleaning force and functionality test have indicated that the proposed system has an excellent performance in providing the visual feedback. Originality/value The main contribution of this paper lies in the development of a magnetic anchoring vision robot system that successfully improves the ability of cleaning the lens and avoiding the blind area in a field of view.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mark Dunkley

PurposeThis paper examines the implications, for States Parties, of the 1954 Convention safeguarding regime in the context of contemporary non-international armed conflict and ANSAs, with a general focus on the Middle East and in situ cultural property.Design/methodology/approachAs the nature of conflict changes and armed forces become further engaged in supporting peacekeeping operations and deliver training to host nation security forces, and human security becomes an increasingly important function of military operations, the protection of cultural heritage (as an expression of a people's identity) becomes a significant contribution to individual operations.FindingsInternational obligations to States Parties for the in situ protection of cultural heritage, under both International Humanitarian Law and HC54, become an ever increasing important responsibility for armed forces to help deliver.Research limitations/implicationsWhile NATO is increasingly focussed on the defence of western states parties from threats posed by the Russian Federation, and observing a commercially and military assertive China, a recent report issued by the Pentagon noted that the Islamic State in Iraq and Syria (ISIS) is regrouping in Iraq faster than in Syria and could regain territory in six to twelve months in the absence of sustained military pressure.Practical implicationsPreservation in situ is used by heritage professionals to refer to the protection of a cultural heritage asset in its original location while the in situ protection of cultural property is a cornerstone topic of the 1954 Hague Convention Special Protection category. The Convention was drafted with international armed conflict in mind but the initial signatories to the Convention had sufficient foresight to consider non-international armed conflict and its potential effect on in situ cultural property by parties to the conflict, including Armed Non-State Actors (ANSA)Social implicationsUN Security Council Resolution 2449 (December 2018) recognized the negative impact of the presence, violent extremist ideology and actions on stability in Syria and the region of both Islamic State of Iraq and the Levant (ISIL) and the Al-Nusrah Front (ANF). This includes not only the devastating humanitarian impact on civilian populations but also the unlawful destruction of cultural heritage.Originality/valueANSAs comprise individuals and groups that are wholly or partly independent of State governments and which threaten or use violence to achieve their goals, such as Islamic State. As such, the military operating environment has changed since 1954.


Author(s):  
Yasushi Kambayashi ◽  
Yasuhiro Tsujimura ◽  
Hidemi Yamachi ◽  
Munehiro Takimoto

This chapter presents a framework using novel methods for controlling mobile multiple robots directed by mobile agents on a communication networks. Instead of physical movement of multiple robots, mobile software agents migrate from one robot to another so that the robots more efficiently complete their task. In some applications, it is desirable that multiple robots draw themselves together automatically. In order to avoid excessive energy consumption, we employ mobile software agents to locate robots scattered in a field, and cause them to autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO) method. ACO is the swarm-intelligence-based method that exploits artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. Even though there is much room to improve the collaboration of multiple agents and ACO, the current results suggest a promising direction for the design of control mechanisms for multi-robot systems. In this chapter, we focus on the implementation of the controlling mechanism of the multi-robot system using mobile agents.


Author(s):  
Brian Dougherty ◽  
Jules White ◽  
Douglas C. Schmidt

Distributed real-time and embedded (DRE) systems are increasingly being constructed with commercial-off-the-shelf (COTS) components to reduce development time and effort. The configuration of these components must ensure that real-time quality-of-service (QoS) and resource constraints are satisfied. Due to the numerous QoS constraints that must be met, manual system configuration is hard. Model-Driven Architecture (MDA) is a design paradigm that incorporates models to provide visual representations of design entities. MDAs show promise for addressing many of these challenges by allowing the definition and automated enforcement of design constraints. This chapter presents MDA techniques and tools that simplify and automate the configuration of COTS components for DRE systems. First, the challenges that make manual DRE system configuration infeasible are presented. Second, the authors provide an incremental methodology for constructing modeling tools to alleviate these difficulties. Finally, the authors provide a case study describing the construction of the Ascent Modeling Platform (AMP), which is a modeling tool capable of producing near-optimal DRE system configurations.


Robotica ◽  
2001 ◽  
Vol 19 (5) ◽  
pp. 581-591 ◽  
Author(s):  
Jihong Lee

In this paper, the analysis of manipulability of robotic systems comprised of multiple cooperating arms is considered. Given bounds on the capabilities of joint actuators for each robot, the purpose of this study is to derive the bounds for task velocity achievable by the system. Since bounds on each joint velocity form a polytope in joint-velocity space and the task space velocity is connected with joint velocity through Jacobian matrices of each robot, the allowable task velocity space, i.e. velocity workspace, for multiple cooperating robot system is also represented as a polytope which is called manipulability polytope throughout this paper. Based on the fact that the boundaries of the manipulability polytope are mapped from the boundaries of allowable joint-velocity space, slack variables are introduced in order to transform given inequality constraint given on joint velocities into a set of normal linear equalities in which the unknowns of the equation are composed of the vertices of manipulability polytope, vectors spanning the null space of the Jacobian matrix, and the slack variables. Either redundant or nonredundant cooperating robot systems can be handled with the proposed technique. Several different application examples including simple SCARA-type robots as well as complex articulated robot manipulators are included, and, under the assumption of firm grip, it will be shown that the calculated manipulability polytope for cooperating robot system is actually the intersection of all the manipulability polytopes of every single robot which is hard to be derived through geometrical manipulation.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Celso De La Cruz ◽  
Ricardo Carelli

SUMMARYThis work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.


2015 ◽  
Vol 77 (17) ◽  
Author(s):  
Jaafar Abdullah ◽  
Hearie Hassan ◽  
Mohamad Rabaie Shari ◽  
Maslina Mohd Ibrahim ◽  
Nolida Yussup ◽  
...  

The development and implementation of a portable nucleonic computed tomography system with clamp-on-features, called “GammaSpider”, employing gamma-ray for engineering inspection is briefly discussed. Depending on the object to be inspected, a small isotopic gamma-ray source, in combination of a NaI(Tl) scintillation detector and an autonomous mechanical gantry set-up are used. The basic theoretical aspects, the system configurations and the other features are presented. This system is capable of generating high quality tomographic images and thus, offers great promise for in-situ engineering inspection. It is successfully used to inspect blockages in pipelines, to examine wooden electric poles and to study hydrodynamic behavior of multiphase flow in a bubble column.  Some of the preliminary results are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document