Detection of Metastatic Tumor Cells in Bone Marrow

2020 ◽  
pp. 121-135
Author(s):  
Thomas J. Moss
1999 ◽  
pp. 333-347 ◽  
Author(s):  
B F Boyce ◽  
T Yoneda ◽  
T A Guise

Metastatic tumor cells can interfere directly with the function of bone cells involved in normal bone remodeling or indirectly by influencing the behavior of hematopoietic, stromal and other cells in bone marrow that interact with bone cells. Recent studies of metastatic cancer have revealed that tumor cells interact closely with vascular endothelial cells, basement membrane and bone marrow stromal cells through cell surface proteins or by releasing factors which affect the function of these cells. Bidirectional interaction between marrow cells and tumor cells can give the latter a selective advantage for growth in bone which can lead to the destruction of or to increased production of bone matrix. Understanding of the mechanisms involved in tumor metastasis and growth in bone has increased in recent years, and in this review we shall describe current knowledge of these mechanisms and of the predilection of certain types of cancers to metastasize to bone, their growth in the bone microenvironment and interactions between them and bone cells. Because metastatic breast cancer has been studied more than any other, we shall focus on it as a representative example, although the general principles apply to other types of cancer and to myeloma.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2944
Author(s):  
Jozef Ban ◽  
Valerie Fock ◽  
Dave N. T. Aryee ◽  
Heinrich Kovar

Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients’ quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.


2006 ◽  
Vol 66 (S 01) ◽  
Author(s):  
T Fehm ◽  
S Becker ◽  
MJ Banys ◽  
G Becker-Pergola ◽  
S Duerr-Stoerzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document