Nucleated Cell Separation Using the Fenwal CS3000™

2020 ◽  
pp. 53-71
Author(s):  
Herbert M. Cullis ◽  
Ellen Areman ◽  
Charles S. Carter
Keyword(s):  
2020 ◽  
pp. 68-72
Author(s):  
V.G. Nikitaev ◽  
A.N. Pronichev ◽  
V.V. Dmitrieva ◽  
E.V. Polyakov ◽  
A.D. Samsonova ◽  
...  

The issues of using of information and measurement systems based on processing of digital images of microscopic preparations for solving large-scale tasks of automating the diagnosis of acute leukemia are considered. The high density of leukocyte cells in the preparation (hypercellularity) is a feature of microscopic images of bone marrow preparations. It causes the proximity of cells to eachother and their contact with the formation of conglomerates. Measuring of the characteristics of bone marrow cells in such conditions leads to unacceptable errors (more than 50%). The work is devoted to segmentation of contiguous cells in images of bone marrow preparations. A method of cell separation during white blood cell segmentation on images of bone marrow preparations under conditions of hypercellularity of the preparation has been developed. The peculiarity of the proposed method is the use of an approach to segmentation of cell images based on the watershed method with markers. Key stages of the method: the formation of initial markers and builds the lines of watershed, a threshold binarization, shading inside the outline. The parameters of the separation of contiguous cells are determined. The experiment confirmed the effectiveness of the proposed method. The relative segmentation error was 5 %. The use of the proposed method in information and measurement systems of computer microscopy for automated analysis of bone marrow preparations will help to improve the accuracy of diagnosis of acute leukemia.


2012 ◽  
Vol 15 (2) ◽  
pp. 116 ◽  
Author(s):  
Ali Ghodsizad ◽  
Viktor Bordel ◽  
Brian Bruckner ◽  
Mathias Loebe ◽  
Gunter Fuerst ◽  
...  

The application of somatic stem cells has been shown to support the recovery of the myocardium in end-stage heart failure. A novel method for the intraoperative isolation and labeling of bone marrow-derived stem cells was established. After induction of general anesthesia, up to 400 mL of bone marrow were harvested from the posterior iliac crest and processed in the operating room under good manufacturing practice conditions by means of the automated cell-selection device Clini-MACS (Miltenyi Biotec). We subsequently injected autologous CD133<sup>+</sup> and CD34<sup>+</sup> stem cells in a predefined pattern around the laser channels in patients undergoing coronary artery bypass surgery and transmyocardial laser procedures. Intraoperative isolation and labeling is an effective cell-separation tool for the future, considering that novel cell markers can be promising new candidates for cell therapy.


2009 ◽  
Vol 129 (11) ◽  
pp. 380-386 ◽  
Author(s):  
Taizo Kobayashi ◽  
Daiki Kato ◽  
Hiroyuki Koga ◽  
Kenichi Morimoto ◽  
Makoto Fukuda ◽  
...  

2019 ◽  
Vol 178 ◽  
pp. 253-262 ◽  
Author(s):  
Kenichi Nagase ◽  
Daimu Inanaga ◽  
Daiju Ichikawa ◽  
Aya Mizutani Akimoto ◽  
Yutaka Hattori ◽  
...  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dan Ren ◽  
Xuexia Zhang ◽  
Zixuan Yu ◽  
Hankun Wang ◽  
Yan Yu

AbstractIt is frequently observed that bamboo particle composites (BPCs) do not show higher mechanical performances than the corresponding wood particles composites (WPCs), although bulk bamboo is much stronger than wood in mechanical performances. Herein this phenomenon was demonstrated from the cell compositions in the applied bamboo particles. To address that, a simple method to physically separate bamboo fibers (BFs) and bamboo parenchyma cells (BPs) from a bamboo particle mixture was developed. Polypropylene (PP) composites with pure BFs, BPs, a mixture of BFs and BPs (BFs + BPs), wood particles (WPs) as fillers were prepared. The flexural and dynamic mechanical properties, water absorption, and thermal properties were determined. The BF/PP composites showed the best mechanical performances (MOR at 35 MPa, MOE at 2.4 GPa), followed by WP/PP, (BF + BP)/PP, and BP/PP. They also exhibited the lowest water absorption and thickness swelling. Little difference was found for the thermal decomposition properties. However, a lower activation energy of BF/PP compared with BP/PP implied an uneven dispersion of BFs and weaker interfacial interaction between BF and PP. The results suggest that the mechanical performances and water resistance of bamboo particle/polymer composites can be significantly improved through cell separation. However, interface modification should be applied if higher performances of BF/PP composites are required.


Sign in / Sign up

Export Citation Format

Share Document