Faculty Opinions recommendation of Calcium spikes accompany the cleavage furrow ingression and cell separation during fission yeast cytokinesis.

Author(s):  
Dimitrios Vavylonis
2021 ◽  
Vol 32 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Abhishek Poddar ◽  
Oumou Sidibe ◽  
Aniruddha Ray ◽  
Qian Chen

Calcium rises transiently at the division plane during cytokinesis of embryonic cells, but the conservation and function of such calcium transients remain unclear. We discovered similar calcium spikes during fission yeast cytokinesis, and demonstrated that calcium promotes contractile ring constriction and daughter cell integrity.


2019 ◽  
Vol 30 (15) ◽  
pp. 1791-1804 ◽  
Author(s):  
Zachary Morris ◽  
Debatrayee Sinha ◽  
Abhishek Poddar ◽  
Brittni Morris ◽  
Qian Chen

Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing transient receptor potential channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with autosomal polycystic kidney disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures, and hyperactivated mitogen-activated protein kinase signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with misregulated turgor pressure. Finally, the pkd2 mutant exhibits strong genetic interactions with two mutants of the septation initiation network pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.


2020 ◽  
Author(s):  
Abhishek Poddar ◽  
Oumou Sidibe ◽  
Aniruddha Ray ◽  
Qian Chen

AbstractThe role of calcium signaling during cytokinesis has long remained ambiguous. The studies of embryonic cell division discovered that calcium concentration increases transiently at the division plane just before the cleavage furrow ingression, leading to the hypothesis that these calcium transients trigger the contractile ring constriction. However, such calcium transients have only been found in animal embryos and their function remains controversial. Here we explored cytokinetic calcium transients in the model organism fission yeast. We adopted GCaMP, a genetically encoded calcium indicator, to determine the intracellular calcium level. We validated GCaMP as a highly sensitive calcium indicator which allowed us to capture the calcium transients stimulated by osmotic shocks. To identify calcium transients during cytokinesis, we first identified a correlation between the intracellular calcium level and cell division. Next, we discovered calcium spikes at the start of the cleavage furrow ingression and the end of the cell separation using time-lapse microscopy to. Inhibition of these calcium spikes slowed down the furrow ingression and led to frequent lysis of the daughter cells. We conclude that like the larger animal embryos fission yeast triggers cytokinetic calcium transients which promote the ring constriction and daughter cell integrity (194).Highlight summary for TOCCalcium rises transiently at the division plane during embryonic cell cytokinesis, but the conservation and function of such calcium transients remain unclear. We identified similar calcium spikes during fission yeast cytokinesis and demonstrated that these spikes promote the contractile ring constriction and the daughter cell integrity (257).


2018 ◽  
Author(s):  
Zachary Morris ◽  
Debatrayee Sinha ◽  
Abhishek Poddar ◽  
Brittni Morris ◽  
Qian Chen

AbstractForce plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force-sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing TRP channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with Autosomal Polycystic Kidney Disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures and hyper-activated MAPK signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with mis-regulated turgor pressure. Lastly, the pkd2 mutant exhibits strong genetic interactions with two mutants of the SIN pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.Highlight summary for TOCFission yeast TRP channel Pkd2p is the homologue of human polycystins. The pkd2 mutant exhibits defects in the contractile ring closure and cell separation during cytokinesis. This essential protein localizes to the cleavage furrow where it likely regulates osmotic homeostasis during cytokinesis.


2003 ◽  
Vol 2 (3) ◽  
pp. 510-520 ◽  
Author(s):  
Quan-Wen Jin ◽  
Dannel McCollum

ABSTRACT Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Δ mutant), have defects in cell separation. Both the scw1-18 and scw1Δ mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Δ. scw1Δ does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Δ may function downstream of the SIN to promote septum formation, since scw1Δ can rescue the septum formation defects of the cps1-191β-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1063-1074 ◽  
Author(s):  
Matthias Sipiczki ◽  
Anita Balazs ◽  
Aniko Monus ◽  
Laszlo Papp ◽  
Anna Horvath ◽  
...  

The post-cytokinetic separation of cells in cell-walled organisms involves enzymic processes that degrade a specific layer of the division septum and the region of the mother cell wall that edges the septum. In the fission yeast Schizosaccharomyces pombe, the 1,3-α-glucanase Agn1p, originally identified as a mutanase-like glycoside hydrolase family 71 (GH71) enzyme, dissolves the mother cell wall around the septum edge. Our search in the genomes of completely sequenced fungi identified GH71 hydrolases in Basidiomycota, Taphrinomycotina and Pezizomycotina, but not in Saccharomycotina. The most likely Agn1p orthologues in Pezizomycotina species are not mutanases having mutanase-binding domains, but experimentally non-characterized hypothetical proteins that have no carbohydrate-binding domains. The analysis of the GH71 domains corroborated the phylogenetic relationships of the Schizosaccharomyces species determined by previous studies, but suggested a closer relationship to the Basidiomycota proteins than to the Ascomycota proteins. In the Schizosaccharomyces genus, the Agn1p proteins are structurally conserved: their GH71 domains are flanked by N-terminal secretion signals and C-terminal sequences containing the conserved block YNFNAY/HTG. The inactivation of the agn1Sj gene in Schizosaccharomyces japonicus, the only true dimorphic member of the genus, caused a severe cell-separation defect in its yeast phase, but had no effect on the hyphal growth and yeast-to-mycelium transition. It did not affect the mycelium-to-yeast transition either, only delaying the separation of the yeast cells arising from the fragmenting hyphae. The heterologous expression of agn1Sj partially rescued the separation defect of the agn1Δ cells of Schizosaccharomyces pombe. The results presented indicate that the fission yeast Agn1p 1,3-α-glucanases of Schizosaccharomyces japonicus and Schizosaccharomyces pombe share conserved functions in the yeast phase.


2003 ◽  
Vol 160 (7) ◽  
pp. 1083-1092 ◽  
Author(s):  
Ana Berlin ◽  
Anne Paoletti ◽  
Fred Chang

Septins are filament-forming proteins with a conserved role in cytokinesis. In the fission yeast Schizosaccharomyces pombe, septin rings appear to be involved primarily in cell–cell separation, a late stage in cytokinesis. Here, we identified a protein Mid2p on the basis of its sequence similarity to S. pombe Mid1p, Saccharomyces cerevisiae Bud4p, and Candida albicans Int1p. Like septin mutants, mid2Δ mutants had delays in cell–cell separation. mid2Δ mutants were defective in septin organization but not contractile ring closure or septum formation. In wild-type cells, septins assembled first during mitosis in a single ring and during septation developed into double rings that did not contract. In mid2Δ cells, septins initially assembled in a single ring but during septation appeared in the cleavage furrow, forming a washer or disc structure. FRAP studies showed that septins are stable in wild-type cells but exchange 30-fold more rapidly in mid2Δ cells. Mid2p colocalized with septins and required septins for its localization. A COOH-terminal pleckstrin homology domain of Mid2p was required for its localization and function. No genetic interactions were found between mid2 and the related gene mid1. Thus, these studies identify a new factor responsible for the proper stability and function of septins during cytokinesis.


2005 ◽  
Vol 84 (12) ◽  
pp. 915-926 ◽  
Author(s):  
Manuel Mendoza ◽  
Stefanie Redemann ◽  
Damian Brunner

Microbiology ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 948-959 ◽  
Author(s):  
Pilar Pérez ◽  
Elvira Portales ◽  
Beatriz Santos

Sign in / Sign up

Export Citation Format

Share Document