Expression of the Human Prostaglandin Endoperoxide H Synthases:Measurement of Cyclooxygenase Activity and Inhibition by Nonsteroidal Anti-Inflammatory Drugs

2020 ◽  
pp. 33-50
Author(s):  
David DeWitt
1990 ◽  
Vol 259 (3) ◽  
pp. G462-G467 ◽  
Author(s):  
J. L. Wallace ◽  
C. M. Keenan ◽  
D. N. Granger

The hypothesis that neutrophils play an important role in the pathogenesis of gastric ulceration induced by nonsteroidal anti-inflammatory drugs (NSAIDs) was tested in rats. Rats made neutropenic by prior treatment with an antibody to rat neutrophils raised in goat were found to be significantly more resistant to the gastric-damaging actions of indomethacin or naproxen than were control rats or rats pretreated with normal goat serum. The reduction of damage in neutropenic rats was not due to effects of the antineutrophil serum on either gastric acid secretion or the ability of indomethacin or naproxen to inhibit prostaglandin synthesis. Gastric cyclooxygenase activity was inhibited by greater than 95% in both normal and neutropenic rats that received indomethacin or naproxen. Reduction of circulating neutrophil numbers by treating rats with methotrexate also resulted in a significant reduction in the susceptibility to gastric damage induced by indomethacin. Since activation of circulating neutrophils appeared to be important in the development of gastric erosions after administration of indomethacin, and in the significant changes in vascular endothelial integrity (Monastral Blue staining) observed within 15 min of indomethacin administration, we investigated the possibility that leukotrienes (LTs) and platelet-activating factor (PAF) might be involved in the pathogenesis of indomethacin-induced ulceration. Changes in gastric LTB4 synthesis were not observed after indomethacin administration. Pretreatment with either an LTD4 antagonist or a PAF antagonist was without significant effect on the extent of gastric damage induced by indomethacin. These results suggest an important role for neutrophils in the pathogenesis of NSAID-induced gastric ulceration. Neutrophils may be important in the vascular injury that occurs early after administration of these compounds.


2000 ◽  
Vol 61 (7) ◽  
pp. 802-810 ◽  
Author(s):  
Patricia Kay-Mugford ◽  
Sally J. Benn ◽  
Jonathan LaMarre ◽  
Peter Conlon

2019 ◽  
Vol 294 (5) ◽  
pp. 1697-1705 ◽  
Author(s):  
William L. Smith ◽  
Michael G. Malkowski

Prostaglandin endoperoxide H synthases-1 and -2, commonly called cyclooxygenases-1 and -2 (COX-1 and -2), catalyze the committed step in prostaglandin biosynthesis—the conversion of arachidonic acid to prostaglandin endoperoxide H2. Both COX isoforms are sequence homodimers that function as conformational heterodimers having allosteric (Eallo) and catalytic (Ecat) subunits. At least in the case of COX-2, the enzyme becomes folded into a stable Eallo/Ecat pair. Some COX inhibitors (i.e. nonsteroidal anti-inflammatory drugs and coxibs) and common fatty acids (FAs) modulate Ecat activity by binding Eallo. However, the interactions and outcomes often differ between isoforms. For example, naproxen directly and completely inhibits COX-1 by binding Ecat but indirectly and incompletely inhibits COX-2 by binding Eallo. Additionally, COX-1 is allosterically inhibited up to 50% by common FAs like palmitic acid, whereas COX-2 is allosterically activated 2-fold by palmitic acid. FA binding to Eallo also affects responses to COX inhibitors. Thus, COXs are physiologically and pharmacologically regulated by the FA tone of the milieu in which each operates—COX-1 in the endoplasmic reticulum and COX-2 in the Golgi apparatus. Cross-talk between Eallo and Ecat involves a loop in Eallo immediately downstream of Arg-120. Mutational studies suggest that allosteric modulation requires a direct interaction between the carboxyl group of allosteric effectors and Arg-120 of Eallo; however, structural studies show some allosterically active FAs positioned in COX-2 in a conformation lacking an interaction with Arg-120. Thus, many details about the biological consequences of COX allosterism and how ligand binding to Eallo modulates Ecat remain to be resolved.


Sign in / Sign up

Export Citation Format

Share Document