Lumbosacral Instrumented Fusion for Spondylolisthesis in the Setting of High Pelvic Tilt

2021 ◽  
pp. 115-122
Author(s):  
Gregory T. Poulter
2017 ◽  
Vol 26 (2) ◽  
pp. 208-219 ◽  
Author(s):  
Alexander A. Theologis ◽  
Gregory M. Mundis ◽  
Stacie Nguyen ◽  
David O. Okonkwo ◽  
Praveen V. Mummaneni ◽  
...  

OBJECTIVE The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD). METHODS Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5–S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5–S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed. RESULTS Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes. CONCLUSIONS Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5–S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5–S1 interbody fusion.


2021 ◽  
Author(s):  
Timothy J Yee ◽  
Michael J Strong ◽  
Matthew S Willsey ◽  
Mark E Oppenlander

Abstract Nonunion of a type II odontoid fracture after the placement of an anterior odontoid screw can occur despite careful patient selection. Countervailing factors to successful fusion include the vascular watershed zone between the odontoid process and body of C2 as well as the relatively low surface area available for fusion. Patient-specific factors include osteoporosis, advanced age, and poor fracture fragment apposition. Cervical 1-2 posterior instrumented fusion is indicated for symptomatic nonunion. The technique leverages the larger posterolateral surface area for fusion and does not rely on bony growth in a watershed zone. Although loss of up to half of cervical rotation is expected after C1-2 arthrodesis, this may be better tolerated in the elderly, who may have lower physical demands than younger patients. In this video, we discuss the case of a 75-yr-old woman presenting with intractable mechanical cervicalgia 7 mo after sustaining a type II odontoid fracture and undergoing anterior odontoid screw placement at an outside institution. Cervical radiography and computed tomography exhibited haloing around the screw and nonunion across the fracture. We demonstrate C1-2 posterior instrumented fusion with Goel-Harms technique (C1 lateral mass and C2 pedicle screws), utilizing computer-assisted navigation, and modified Sonntag technique with rib strut autograft.  Posterior C1-2-instrumented fusion with rib strut autograft is an essential technique in the spine surgeon's armamentarium for the management of C1-2 instability, which can be a sequela of type II dens fracture. Detailed video demonstration has not been published to date.  Appropriate patient consent was obtained.


2021 ◽  
Vol 10 (14) ◽  
pp. 3182
Author(s):  
Hiroaki Nakashima ◽  
Keigo Ito ◽  
Yoshito Katayama ◽  
Mikito Tsushima ◽  
Kei Ando ◽  
...  

The conus medullaris typically terminates at the L1 level; however, variations in its level and the factors associated with the conus medullaris level are unclear. We investigated the level of conus medullaris on magnetic resonance imaging in healthy volunteers. In total, 629 healthy adult volunteers (≥50 individuals of each sex and in each decade of age from 20 to 70) were enrolled. The level of the conus medullaris was assessed based on the T2-weighted sagittal magnetic resonance images, and factors affecting its level were investigated employing multivariate regression analysis including the participants’ background and radiographical parameters. L1 was the most common conus medullaris level. Participant height was significantly shorter in the caudally placed conus medullaris (p = 0.013). With respect to the radiographical parameters, pelvic incidence (p = 0.003), and pelvic tilt (p = 0.03) were significantly smaller in participants with a caudally placed conus medullaris. Multiple regression analysis showed that the pelvic incidence (p < 0.0001) and height (p < 0.0001) were significant factors affecting the conus medullaris level. These results indicated that the length of the spinal cord varies little among individuals and that skeletal differences affect the level of the conus medullaris.


Sign in / Sign up

Export Citation Format

Share Document