Electrochemical Investigations of Antibiotic Drug Linezolid in Pharmaceuticals and Spiked Human Urine by Stripping Voltammetric Techniques

Author(s):  
Krishna Kumar Jhankal ◽  
Varsha Jakhar ◽  
D. K. Sharma
Author(s):  
Nabil N. AL-Hashimi ◽  
Amjad H. El-Sheikh ◽  
Manal I. Alruwad ◽  
Mohanad M. Odeh

Background: A simple and powerful microextraction procedure, the solvent bar microextraction (SBME), was used for the simultaneous determination of two diuretics, furosemide and spironolactone in human urine and plasma samples, using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Methods: The appropriate amount (2 µL) of 1-octanol as an organic solvent confined within (2.5 cm) of a porous hollow fiber micro-tube, sealed at both ends was used for this procedure. The conditions for the SBME were optimized in water and the analytical performance were examined in spiked human urine and plasma samples. Results: The optimized method exhibited good linearity (R2 > 0.997) over the studied range of higher than 33 to 104 µg L-1 for furosemide and spironolactone in urine and plasma samples, illustrating a satisfactory precision level with RSD values between 2.1% and 9.1%. Discussion: The values of the limits of detection were found to be in the range of 6.39 to 9.67 µg L-1, and extraction recovery˃ 58.8% for both diuretics in urine and plasma samples. The applicability and effectiveness of the proposed method for the determination of furosemide and spironolactone in patient urine samples were tested. Conclusion: In comparison with reference methods, the attained results demonstrated that SBME combined with HPLC-DAD was proved to be simple, inexpensive, and promising analytical technology for the simultaneous determination of furosemide and spironolactone in urine and plasma samples.


2011 ◽  
Vol 76 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Ibrahim Hüdai Taşdemir ◽  
Orhan Çakirer ◽  
Nevin Erk ◽  
Esma Kiliç

Electrochemical properties and diffusion-adsorption behavior of risperidone (RPN), an antiphyscotic drug, on hanging mercury drop electrode (HMDE) were carried out in Britton–Robinson (BR) buffer. Some electrochemical parameters such as diffusion coefficient, number of transferred electrons and proton participated to its reduction mechanism and surface coverage coefficient were calculated from the results of cyclic voltammetry, square-wave voltammetry and constant potential electrolysis. RPN was found to be reduced with single two-electron/two-proton quasi-reversible mechanism controlled mainly by adsorption with some diffusion contribution at the potential about –1.58 V (vs Ag|AgCl electrode). Experimental parameters were optimized to develop a new, accurate, rapid, selective and simple square-wave cathodic adsorptive stripping voltammetric (SWCAdSV) method for direct determination of RPN in pharmaceutical dosage forms, spiked human urine and human serum samples without time-consuming steps prior to drug assay. This method was based on the relation between the peak current and the concentration of RPN and it was recognized that peak current of reduction wave linearly changes with the concentration of RPN in the concentration range of 1.5–150 nM, when optimum preconcentration potential –0.65 V and optimum preconcentration time 60 s were applied. In this method, limit of detection (LOD) was found as 5.18 nM (2.12 ppb). The method was successfully applied to determine the RPN content of commercial pharmaceutical preparations, spiked human serum and spiked human urine. The method was found to be highly accurate and precise, having a relative standard deviation of less than 4.80% for all applications.


2020 ◽  
Vol 1109 ◽  
pp. 61-68 ◽  
Author(s):  
Natalia E. Markina ◽  
Alexey V. Markin ◽  
Karina Weber ◽  
Jürgen Popp ◽  
Dana Cialla-May

Il Farmaco ◽  
2004 ◽  
Vol 59 (7) ◽  
pp. 537-542
Author(s):  
Fathalla Belal ◽  
Abdel-Rahman A. Al-Majed ◽  
Kamal E.E. Ibrahim ◽  
Nasr Y. Khalil

Sign in / Sign up

Export Citation Format

Share Document