scholarly journals Evaluation of the power performance of various wave energy conversion concepts for Faroese coastal waters

Author(s):  
B. Joensen ◽  
H.B. Bingham ◽  
B.A. Niclasen
Author(s):  
Yi-Hsiang Yu ◽  
Ye Li ◽  
Kathleen Hallett ◽  
Chad Hotimsky

This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter (OSWEC). A successful wave energy conversion design requires balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion (WEC) system, which is often determined based on the device’s power performance; the cost of manufacturing, deployment, operation, and maintenance; and environmental compliance. The objective of this study is to demonstrate the importance of a cost-driven design strategy and how it can affect a WEC design. A set of three oscillating surge wave energy converter designs was analyzed and used as examples. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis, and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, we present a discussion on the environmental barrier, integrated design strategy, and the key areas that need further investigation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3041 ◽  
Author(s):  
Seongho Ahn ◽  
Kevin A. Haas ◽  
Vincent S. Neary

Opportunities and constraints for wave energy conversion technologies and projects are evaluated by identifying and characterizing the dominant wave energy systems for United States (US) coastal waters using marginal and joint distributions of the wave energy in terms of the peak period, wave direction, and month. These distributions are computed using partitioned wave parameters generated from a 30 year WaveWatch III model hindcast, and regionally averaged to identify the dominant wave systems contributing to the total annual available energy ( A A E ) for eleven distinct US wave energy climate regions. These dominant wave systems are linked to the wind systems driving their generation and propagation. In addition, conditional resource parameters characterizing peak period spread, directional spread, and seasonal variability, which consider dependencies of the peak period, direction, and month, are introduced to augment characterization methods recommended by international standards. These conditional resource parameters reveal information that supports project planning, conceptual design, and operation and maintenance. The present study shows that wave energy resources for the United States are dominated by long-period North Pacific swells (Alaska, West Coast, Hawaii), short-period trade winds and nor’easter swells (East Coast, Puerto Rico), and wind seas (Gulf of Mexico). Seasonality, peak period spread, and directional spread of these dominant wave systems are characterized to assess regional opportunities and constraints for wave energy conversion technologies targeting the dominant wave systems.


2021 ◽  
Vol 111 ◽  
pp. 102654
Author(s):  
Zhi Han ◽  
Feifei Cao ◽  
Martyn Hann ◽  
Haoxiang Gong ◽  
Shangze Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document