dominant wave
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 243 ◽  
pp. 110332
Author(s):  
Yuanyuan Xu ◽  
Shuxiu Liang ◽  
Zhaochen Sun ◽  
Qingren Xue

2021 ◽  
Author(s):  
Jing Lu

<p>    Surface gravity waves play an important role in sediment transport. Previous studies have focused on the role of bottom shear enhanced by the surface wave orbital velocity. In this study, we embedded the University of New South Wales Sediment model into the Princeton Ocean Model, which includes a three-dimensional wave module to study sediment dynamics near a sandy spit in Sanniang Bay in the South China Sea. The simulated results for the deposition rate show that wave-induced currents play a dominant role in the maintenance of the sandy spit. The spit tip was formed as a result of the separation of wave-induced coastal flow. The spit tip was shown to be a barrier to the dominant wave-induced current, and the spit base was simulated to form via sand accumulation in the shelter of the spit tip. The deposition is mainly in the low-energy region behind the tip of the spit, which can counter the erosion effect of dominant wave-induced currents. The dominant wave-induced current prompts the lateral infilling of the spit tip when both the spit tip and base are above the water surface. The sediment carried by the coastal current is deposited along the flow branch of separation and forms the spit tip, which indicates that the sediment is deposited where the longshore current changes into an offshore current. As the water depth increases along the separated flow spindle, the bottom shear stress decreases, contributing to the deposition of the spit tip.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 887
Author(s):  
Guozhou Liang ◽  
Jungang Yang ◽  
Jichao Wang

Chinese-French Oceanography Satellite (CFOSAT), the first satellite which can observe global ocean wave and wind synchronously, was successfully launched On 29 October 2018. The CFOSAT carries SWIM that can observe ocean wave on a global scale. Based on National Data Buoy Center (NDBC) buoys and Jason-3 altimeter data, this study evaluated the accuracy of L2 level products of CFOSAT SWIM from August 2019 to September 2020. The results show that the accuracy of the nadir Significant Wave Height (SWH) data of the SWIM wave spectrometer is good. Compared with the data of the NDBC buoys and Jason-3 altimeter, the RMSE of the nadir box SWH were 0.39 and 0.21 m, respectively. The variation trend of SWH were first increasing and then decreasing with the increasing of the wave height. The precision of off-nadir wave spectrum SWH is not better than nadir box SWH data. Accuracy was evaluated for off-nadir data from August 2019 to June 2020 and after June 2020, respectively. After linear regression correction, the accuracy of off-nadir wave spectrum SWH was improved. The data accuracy evaluation and comparison of different time period showed that the off-nadir wave spectrum SWH accuracy was improved after the data version was updated in June 2020, especially for 6° and 8° wave spectrum. The precision of off-nadir wave spectrum SWH decreases with the increasing of wave height. The accuracy of the dominant wave direction of each wave spectrum is also not very good, and the accuracy of the dominant wave direction of 10° wave spectrum is slightly better than the others. In general, the accuracy of SWIM nadir beam SWH data reaches the high data accuracy of traditional altimeter, while the accuracy of off-nadir wave spectrum SWH is less than that of nadir beam SWH data. The off-nadir SWH data accuracy after June 2020 has been greatly improved.


2020 ◽  
Vol 50 (11) ◽  
pp. 3295-3307
Author(s):  
Shuiqing Li ◽  
Zhongshui Zou ◽  
Dongliang Zhao ◽  
Yijun Hou

AbstractWind stress depends on the sea surface roughness, which can be significantly changed by surface wind waves. Based on observations from a fixed platform, we examined the dependences of the sea surface roughness length on dominant wave characteristic parameters (wave age, wave steepness) at moderate wind speeds and under mixed-wave conditions. No obvious trend was found in the wave steepness dependence of sea surface roughness, but a wave steepness threshold behavior was readily identified in the wave age dependence of sea surface roughness. The influence of dominant wind waves on the surface roughness was illustrated using a wind–wave coupling model. The wave steepness threshold behavior is assumed to be related to the onset of dominant wave breaking. The important role of the interaction between swell and wind wave was highlighted, as swell can absorb energy from locally generated wind wave, which subsequently reduces the wave steepness and the probability of dominant wave breaking.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3041 ◽  
Author(s):  
Seongho Ahn ◽  
Kevin A. Haas ◽  
Vincent S. Neary

Opportunities and constraints for wave energy conversion technologies and projects are evaluated by identifying and characterizing the dominant wave energy systems for United States (US) coastal waters using marginal and joint distributions of the wave energy in terms of the peak period, wave direction, and month. These distributions are computed using partitioned wave parameters generated from a 30 year WaveWatch III model hindcast, and regionally averaged to identify the dominant wave systems contributing to the total annual available energy ( A A E ) for eleven distinct US wave energy climate regions. These dominant wave systems are linked to the wind systems driving their generation and propagation. In addition, conditional resource parameters characterizing peak period spread, directional spread, and seasonal variability, which consider dependencies of the peak period, direction, and month, are introduced to augment characterization methods recommended by international standards. These conditional resource parameters reveal information that supports project planning, conceptual design, and operation and maintenance. The present study shows that wave energy resources for the United States are dominated by long-period North Pacific swells (Alaska, West Coast, Hawaii), short-period trade winds and nor’easter swells (East Coast, Puerto Rico), and wind seas (Gulf of Mexico). Seasonality, peak period spread, and directional spread of these dominant wave systems are characterized to assess regional opportunities and constraints for wave energy conversion technologies targeting the dominant wave systems.


2020 ◽  
Vol 12 (4) ◽  
pp. 667
Author(s):  
Murilo Teixeira Silva ◽  
Weimin Huang ◽  
Eric W. Gill

The scattering theory developed in the past decades for high-frequency radio oceanography has been restricted to surfaces with small heights and small slopes. In the present work, the scattering theory for bistatic high-frequency radars is extended to ocean surfaces with arbitrary wave heights. Based on recent theoretical developments in the scattering theory for ocean surfaces with arbitrary heights for monostatic radars, the electric field equations for bistatic high-frequency radars in high sea states are developed. This results in an additional term related to the first-order electric field, which is only present when the small-height approximation is removed. Then, the radar cross-section for the additional term is derived and simulated, and its impact on the total radar cross-section at different radar configurations, dominant wave directions, and sea states is assessed. The proposed term is shown to impact the total radar cross-section at high sea states, dependent on radar configuration and dominant wave direction. The present work can contribute to the remote sensing of targets on the ocean surface, as well as the determination of the dominant wave direction of the ocean surface at high sea states.


2020 ◽  
Vol 104 ◽  
pp. 1-11
Author(s):  
Daniel Ugochukwu Agu ◽  
Mary Leece ◽  
Jose Alcala-Medel ◽  
Anna Sahdev ◽  
Jim Lim ◽  
...  
Keyword(s):  

2019 ◽  
Vol 19 (1) ◽  
pp. 41-48
Author(s):  
Le Duc Cuong

This paper presents some results of studying the SWAN model, and application of SWAN model to simulate wave field representative of the rainy season and dry season in the coastal area of Hai Phong. During the dry season, the dominant wave direction is in a range from 60o to 100o, maximum height of waves near shore is in a range from 1,0 m to 1,5 m with wavelength of about 2,0 m to 5,0 m, maximum height of waves offshore is in a range from 2,0 m to 2,5 m with wavelength of about 6,0 m to 16 m. During the rainy season, wave height near shore is in a range from 0,2 m to 0,6 m, and that offshore is in a range from 0,8 m to 1,4 m, maximum height of waves is about 3,4 m, predominant wave directions in this season are E, SE and S. In this scenario that predicts waves generated by storms, wave height offshore is in a range from 8,0 m to 10 m with wavelength of about 60 m, and that near shore is in a range from 2,0 m to 4,0 m with wavelength of about 10–20 m.


2019 ◽  
Vol 11 (7) ◽  
pp. 839 ◽  
Author(s):  
Yury Yurovsky ◽  
Vladimir Kudryavtsev ◽  
Semyon Grodsky ◽  
Bertrand Chapron

Multi-year field measurements of sea surface Ka-band dual-co-polarized (vertical transmit–receive polarization (VV) and horizontal transmit–receive polarization (HH)) radar Doppler characteristics from an oceanographic platform in the Black Sea are presented. The Doppler centroid (DC) estimated using the first moment of 5 min averaged spectrum, corrected for measured sea surface current, ranges between 0 and ≈1 m/s for incidence angles increasing from 0 to 70 ∘ . Besides the known wind-to-radar azimuth dependence, the DC can also depend on wind-to-dominant wave direction. For co-aligned wind and waves, a negative crosswind DC residual is found, ≈−0.1 m/s, at ≈20 ∘ incidence angle, becoming negligible at ≈ 60 ∘ , and raising to, ≈+0.5 m/s, at 70 ∘ . For our observations, with a rather constant dominant wave length, the DC is almost wind independent. Yet, results confirm that, besides surface currents, the DC encodes an expected wave-induced contribution. To help the interpretation, a two-scale model (KaDOP) is proposed to fit the observed DC, based on the radar modulation transfer function (MTF) previously developed for the same data set. Assuming universal spectral shape of energy containing sea surface waves, the wave-induced DC contribution is then expressed as a function of MTF, significant wave height, and wave peak frequency. The resulting KaDOP agrees well with independent DC data, except for swell-dominated cases. The swell impact is estimated using the KaDOP with a modified empirical MTF.


Sign in / Sign up

Export Citation Format

Share Document