Region of Interest Detection in COVID-19 CT Images Using Neutrosophic Logic

Author(s):  
S. N. Kumar ◽  
A. Lenin Fred ◽  
L. R. Jonisha Miriam ◽  
Ajay Kumar H. ◽  
Parasuraman Padmanabhan ◽  
...  
2006 ◽  
Vol 45 (7) ◽  
pp. 077201 ◽  
Author(s):  
Huibao Lin

Author(s):  
Yupei Zhang ◽  
Yang Lei ◽  
Mingquan Lin ◽  
Walter Curran ◽  
Tian Liu ◽  
...  
Keyword(s):  

2010 ◽  
Vol 44-47 ◽  
pp. 1612-1616
Author(s):  
Xiao Hui Huang ◽  
Guo Qun Zhao ◽  
Wen Guang Liu ◽  
Pei Lai Liu

The frameworks for finite element (FE) model of bone tissue available in pervious literatures, to some extent, are expert-oriented and give rise to a considerable deviation in geometric model and assignment of material property. The objective of this study is to develop a new framework to reconstruct accurate individual bone FE model based on CT images rapidly and conveniently. In image-processing, automatic segmentation of the region of interest (ROIs) improves the efficiency. The idea of enclosed volume of interest (VOI) overcomes the drawback of geometric ambiguity in Marching Cube (MC) method. Geometric model is easily obtained by a STL translator and smooth operator in home-made program. In the material property assignment, two templates for hexahedron and tetrahedron FE models, respectively, are put forth to smoothing an abrupt change of material property in the region from cortical to cancellous. K-mean algorithm is introduced to cluster material properties to improve partition performance. Finally, the new framework is demonstrated by the implementation of a femoral FE model.


2018 ◽  
Vol 14 (7) ◽  
pp. 155014771879075 ◽  
Author(s):  
Chi Yoon Jeong ◽  
Hyun S Yang ◽  
KyeongDeok Moon

In this article, we propose a fast method for detecting the horizon line in maritime scenarios by combining a multi-scale approach and region-of-interest detection. Recently, several methods that adopt a multi-scale approach have been proposed, because edge detection at a single is insufficient to detect all edges of various sizes. However, these methods suffer from high processing times, requiring tens of seconds to complete horizon detection. Moreover, the resolution of images captured from cameras mounted on vessels is increasing, which reduces processing speed. Using the region-of-interest is an efficient way of reducing the amount of processing information required. Thus, we explore a way to efficiently use the region-of-interest for horizon detection. The proposed method first detects the region-of-interest using a property of maritime scenes and then multi-scale edge detection is performed for edge extraction at each scale. The results are then combined to produce a single edge map. Then, Hough transform and a least-square method are sequentially used to estimate the horizon line accurately. We compared the performance of the proposed method with state-of-the-art methods using two publicly available databases, namely, Singapore Marine Dataset and buoy dataset. Experimental results show that the proposed method for region-of-interest detection reduces the processing time of horizon detection, and the accuracy with which the proposed method can identify the horizon is superior to that of state-of-the-art methods.


2018 ◽  
Vol 24 (2) ◽  
pp. 1005-1011 ◽  
Author(s):  
Zuraini Othman ◽  
Azizi Abdullah ◽  
Anton Satria Prabuwono

Sign in / Sign up

Export Citation Format

Share Document