Experimental method of the full scale shaking table test using the inertial loading equipment

Author(s):  
S. Yamada ◽  
Y. Matsumoto ◽  
H. Akiyama
Author(s):  
Hiroshi AKIYAMA ◽  
Satoshi YAMADA ◽  
Chikahiro MINOWA ◽  
Takayuki TERAMOTO ◽  
Fumio OTAKE ◽  
...  

Author(s):  
Satoshi Yamada ◽  
Yuka Matsumoto ◽  
Michio Yamaguchi ◽  
Nobuyuki Ogawa ◽  
Akira Wada ◽  
...  

In this paper, a new experimental method of full scale real time shaking table test of structural element is introduced. The main feature of this experimental method is characterized by the use of the inertial loading equipment. The inertial loading equipment consists of a loading frame, a counter weight and isolators. The loading frame supported by the isolators was set on the shaking table. Specimens used in this experimental method were partial frames taken out from full scale building structures. The test set-up was composed of a specimen, the inertial loading equipment and loading beam which transmits the horizontal force to the specimen from the inertial loading equipment. This test set-up, regarded as a single degree of freedom system, makes it easy to understand the dynamic behavior of the test set-up including a specimen. Furthermore, the natural period of the experimental system corresponds to the fundamental natural period of existing building structures. So, full scale and real time dynamic loading test of partial frame can be realized. This method was developed for the existing large scale shaking table and the effectiveness has been already verified through many experiments. Further development of the experimental method adjusted to the 3-D largest shaking table under construction at present is also described.


Author(s):  
Yuka MATSUMOTO ◽  
Satoshi YAMADA ◽  
Ken OKADA ◽  
Masatoshi IDE ◽  
Toru TAKEUCHI ◽  
...  

Author(s):  
Hiroshi AKIYAMA ◽  
Satoshi YAMADA ◽  
Yuka MATSUMOTO ◽  
Saburo MATSUOKA ◽  
Keiji OGURA ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 4037 ◽  
Author(s):  
Okpin Na ◽  
Jejin Park

Real-time hybrid method is an economical and efficient test method to evaluate the dynamic behavior. The purpose of this study is to develop the computational algorithm and to prove the reliability of a real-time hybrid control system. For performing the multi-direction dynamic test, three dynamic actuators and the optimized real-time hybrid system with new hybrid simulation program (FEAPH) and a simplified inter-communication were optimized. To verify the reliability and applicability of the real-time hybrid control system, 3-DOF (3 Degrees of Freedom) non-linear dynamic tests with physical model were conducted on a steel and concrete frame structure. As a ground acceleration, El Centro and Northridge earthquake waves were applied. As a result, the maximum error of numerical analysis is 13% compared with the result of shaking table test. However, the result of real-time hybrid test shows good agreement with the shaking table test. The real-time hybrid test using FEAPH can make good progress on the total testing time and errors. Therefore, this test method using FEAPH can be effectively and cheaply used to evaluate the dynamic performance of the full-scale structure, instead of shaking table and full-scale test.


2013 ◽  
Vol 8 (3) ◽  
pp. 349-375 ◽  
Author(s):  
Guido Magenes ◽  
Andrea Penna ◽  
Ilaria Enrica Senaldi ◽  
Maria Rota ◽  
Alessandro Galasco

Sign in / Sign up

Export Citation Format

Share Document