Spiral slot-and-pillar mining with backfill

Author(s):  
J.D. Dixon
Keyword(s):  
2012 ◽  
Vol 616-618 ◽  
pp. 406-410
Author(s):  
Gui Liu ◽  
Hua Xing Zhang ◽  
Jin Hui Chen ◽  
Chao Gao

By making full use of the advantages of strip mining method and full-pillar mining method, the wide strip and full-pillar mining method can achieve the aim of mining under villages. However, at the full-pillar mining stage, the difficulty in managing several workfaces which are at work at the same time still exists. To improve the wide strip and full-pillar mining method’s applicability, an optimization of extraction sequence for coal pillars instead of the multi-working-face is put forward at the stage of full-pillar mining, and in the case of the deformation limit of surface structures is satisfied, to extract all the coal pillars which are under villages. By specific analysis of the extraction sequence optimization of the coal pillars in No.1 mine under Qian Xudapo village which belongs to Chang Chun coal Co., LTD., a better result is got which also acts a technological reference for the extraction under villages.


2021 ◽  
Vol 861 (5) ◽  
pp. 052058
Author(s):  
Jun Yang ◽  
Bowen Qiao ◽  
Yubing Gao ◽  
Hainan Gao ◽  
Xingjian Wei ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 6353
Author(s):  
Zhaowen Du ◽  
Shaojie Chen ◽  
Junbiao Ma ◽  
Zhongping Guo ◽  
Dawei Yin

Gob-side entry retaining, also termed as non-pillar mining, plays an important role in saving coal resources, high production and efficiency, extending the service life of mine and improving the investment benefit. Herein, a gob-side entry retaining method involving the use of bag filling material for wall construction is proposed based on the thin seam mining characteristics. First, a gob-side entry retaining mechanical model is established, and the side support resistance of the 8101 working face is calculated. The mechanical properties of the bag material are investigated through experiments, and the construction technology of the gob-side entry retaining approach involving the use of bag filling material for wall construction is introduced. The deformation on the two sides, the roof and floor of the roadway, are simulated via numerical methods and monitored during field tests. The results show a small control range for the deformations and a good roadway retention effect, thereby proving the feasibility of the bag filling material for wall construction. This study provides a reference for the development of gob-side entry retaining mining for thin coal seams.


Sign in / Sign up

Export Citation Format

Share Document