pillar mining
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 46)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 7 ◽  
pp. 9122-9132
Author(s):  
Nan Zhou ◽  
Erbao Du ◽  
Meng Li ◽  
Jixiong Zhang ◽  
Chaowei Dong

2021 ◽  
Vol 861 (5) ◽  
pp. 052058
Author(s):  
Jun Yang ◽  
Bowen Qiao ◽  
Yubing Gao ◽  
Hainan Gao ◽  
Xingjian Wei ◽  
...  

Author(s):  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Gang Yang ◽  
Yajun Wang ◽  
Jindong Cao ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3869
Author(s):  
Karolina Adach-Pawelus ◽  
Daniel Pawelus

In the polish underground copper mines owned by KGHM Polska Miedz S.A, various types of room and pillar mining systems are used, mainly with roof deflection, but also with dry and hydraulic backfill. One of the basic problems associated with the exploitation of copper deposits is rockburst hazard. Aa high level of rockburst hazard is caused by mining the ore at great depth in difficult geological and mining conditions, among others, in the vicinity of remnants. The main goal of this study is to investigate how hydraulic backfill improves the geomechanical situation in the mining filed and reduce rockburst risk in the vicinity of remnants. Numerical modeling was conducted for the case study of a mining field where undisturbed ore remnant, 40 m in width, was left behind. To compare the results, simulations were performed for a room and pillar mining system with roof deflection and for a room and pillar mining system with hydraulic backfill. Results of numerical analysis demonstrate that hydraulic backfill can limit rock mass deformation and disintegration in the mining field where remnants have been left. It may also reduce stress concentration inside or in the vicinity of a remnant, increase its stability, as well as prevent and reduce seismic and rockburst hazards. Hydraulic backfill as a local support stabilizes the geomechanical situation in the mining field.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guangyuan Yu ◽  
Jiong Wang ◽  
Jianjun Ren ◽  
Jinzhu Hu ◽  
Zhifu Pan ◽  
...  

To control the roof during gob-side entry retaining by roof cutting in inclined coal seams, the retained gob-side roadway is zoned based on the mechanical principle and technological process of no-pillar mining with gob-entry retention. A simplified mechanical model for surrounding rocks in different subzones was established by using theoretical analysis and numerical simulation to attain the demand for the support resistance and deformation of the roof in different subzones. According to load and deformation characteristics of the roof and mechanical characteristics of NPR cables, single props, and a sliding-type gangue-retaining structure formed by U-shaped steel inserts, the supporting systems for roadways in different subzones and the constitutive model thereof were established. On this basis, the action of the supporting system was analysed and a field test was performed. The results show that the supporting system undergoes three stages of behaviour, i.e., pressure growth, yielding under constant pressure, and stabilisation during whole entry retention. It can guarantee the collaborative deformation of the supporting systems with the roof on the premise of constant support resistance, thus satisfying the requirement for roadway protection. The roadway 150 m back from the working face is stable, and the final convergence between the roof and floor of the retained entry is 257 mm, showing a favourable entry-retention effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiaqi Wang ◽  
Qiang Zhang ◽  
Meng Li ◽  
Hengfeng Liu ◽  
Cunli Zhu

To resolve the problem of top mine instability and the consequent ecological damage caused by different grades of ore deposits in the layered mining process, layered filling-pillar-mining-displacement method (LFPMD) is proposed using a potash mine as an example. Based on the operation principles of the tail salt filling system, the mechanical behaviours of the tail salt under initial tamping and overburden loading were obtained through compaction tests in the laboratory. In addition, the mining-filling mass ratio of tail salt was derived. Based on the mining geological conditions of a potash mine in Laos and the compaction characteristics of tail salt, a mechanical model of top control by tail salt and a numerical model of top control by the pillars were established to discuss the stability of the upper-layer top mine and the lower-layer top mine. It was found that when the elastic foundation coefficient of the tail salt is greater than 550 MN·m−3, and the width of the retained pillars is 10 m, stability of the upper layer and the lower layer can be guaranteed. The results revealed that the LFPMD method can ensure stability of the overburden in the stope and reduce environmental damage while treating tail salt underground.


2021 ◽  
Vol 2 (4) ◽  
pp. 52-61
Author(s):  
Anton V. Panov ◽  
Leonid A. Nazarov

The authors have developed and implemented a 3D geomechanical model using the finite element method for a typical configuration of an underground space during room-and-pillar mining. The authors formulate and solve an inverse problem on determination of values and orientation of external horizontal stresses and deformation characteristics of structural elements of the geotechnology by the measurement data of sidewall convergence in rooms in the course of mining. The level curves of different objective functions are analyzed, the mixed inverse problem resolvability is demonstrated, and the equivalence domain size is correlated with the relative error of input data.


2021 ◽  
Vol 2 (3) ◽  
pp. 123-134
Author(s):  
Sergey Yu. Vasichev ◽  
Alexander A. Neverov

A method is proposed for mining thick and flat ore deposits at great depths in conditions of a decline in the value of extracted mineral raw materials. It is found that safe mining with solidifying backfill and caving is achieved by determining the parameters of stable spans of rooms, in place of which artificial supports and temporary ore pillars are formed. These pillars are recovered with a lag behind room-and-pillar mining by caving of ore and enclosing rocks. It is shown that, depending on the type of geomechanical model of geomedium and orientation of the initial natural stresses acting in the rock mass relative to the mining front, the field of application of the mining system is limited by the depth and parameters of excavation. Predictive areas of possible rock failure are determined applicably to rock masses with different degree of disturbance.


Sign in / Sign up

Export Citation Format

Share Document