strip mining
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaojun Zhu ◽  
Feng Zha ◽  
Guangli Guo ◽  
Pengfei Zhang ◽  
Hua Cheng ◽  
...  

Intensive and massive coal mining causes a series of geological hazards and environmental problems, especially surface subsidence. At present, two major types of subsidence control technology are applied: backfilling technology and partial mining technology. However, the cost of backfill mining is high and partial mining has a low recovery ratio. Therefore, the backfill-strip mining is used to solve the problems of high cost and shortage of filling materials in coal mines at present. A subsidence control design method of backfill-strip mining was proposed in this paper based on the subsidence control effects and economic benefits. First, the stability of the composite support pillar of the filling body and coal pillars in the backfill-strip mining is analyzed, and the values of the main subsidence influencing factors that include the filling material, the size of the backfilling working face, caving mining face, and residual coal pillar are preliminarily determined. Then, the surface movement and deformation are predicted based on the equivalent superposition probability integral method (PIM). The subsidence influencing factors are optimized and determined by comparing the requirements of the safety fortification index of the antideformation ability of surface buildings, resource recovery rate, and coal mining cost. Finally, the mining scheme design parameters of the backfill-strip mining technology are determined. This method is applied in the subsidence control design of backfill-strip mining in the Ezhuang coal mine. Research results show that backfill-strip mining can ensure the safety of surface buildings, increase the resource recovery rate, and reduce coal mining costs through the reasonable design of this method. This study can provide scientific guidance for subsidence disaster control, prevention, and engineering design in backfill-strip mining.


2021 ◽  
pp. 146144482110405
Author(s):  
Devon Greyson ◽  
Kaitlin L Costello

Sympathy sockpuppets are false online identities used for purposes of extracting care work from others. While online community infiltration for nefarious purposes is a well-documented phenomenon, people may also join online communities using deceptive personas (“sockpuppet” accounts) for non-nefarious reasons, such as to gain sympathy or cultivate a sense of belonging in a group. In comparison with scamming and trolling, this more subtle form of online deception is not well understood, and to date, its impacts on individuals and communities have not been fully articulated. This knowledge gap leaves communities without guidance when managing the impacts of this sympathy sockpuppet deception. We interviewed people who had been members of online communities that discovered sympathy sockpuppets in their midst to explore and characterize the phenomenon of sympathy sockpuppetry and to provide guidance for other individuals and communities that encounter similar forms of online deception.


2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Xiaoping Shao ◽  
Long Wang ◽  
Xin Li ◽  
Zhiyu Fang ◽  
Bingchao Zhao ◽  
...  

AbstractStrip mining is the key technology to solve the problem of coal mining under water, so mastering the law of overburden load transfer in strip mining is the key to safe production in working face. We studied it in the context of the shallow seam No. 3 in the Shanghe Coal Mine (northern Shaanxi Province, China) through similarity simulation and field measurement analysis. A theoretical analysis, based on the concept of pressure arch, allowed the establishment of a continuous arch theoretical model for the strip coal pillars (or filling bodies) of the mine. A similar simulation study on strip filling and staged mining has previously shown that, in a first stage, the overlying strata load is mainly transferred to the remaining strip coal pillars; in a second stage, this load is mainly sustained by the odd-numbered strip coal pillars; finally, in a third stage, this load is mainly sustained by the first-stage strip filling body, while the third-stage filling body is not loaded. Our theoretical analysis showed that, during the first stage, the overlying rock load outside the arch was mainly sustained by the arch structure, while that inside of the arch was sustained by the filling body; in the second stage, the arch structure lost stability during the recovery of the even-numbered coal pillars and the arch axis developed upward, leading to the formation of a new arch with an odd number of coal pillars as the arch foot; in the third stage, after the recovery of the odd-numbered coal pillars, a new arch was formed. The arch foot of the new supporting structure was represented by the first-stage filling body; moreover, the load was mainly borne by the second-stage filling body, ensuring the stability of the overburden rock after mining. The theoretical analysis revealed that the pillar or filling body only bears part of the overburden load in strip filling mining. The pillar (filling body) load in correspondence of working face 3216 during each stage of filling was measured and analyzed, proving a continuous arch structure transformation between the pillar and the filling body. Finally, we verified the reliability of the proposed theoretical model.


2021 ◽  
Vol 7 (2) ◽  
pp. 115
Author(s):  
Masjon Parhusip ◽  
Waterman Sulistyana Bargawa ◽  
Tedy Agung Cahyadi
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sun Qiang ◽  
Zhou Nan ◽  
Song Weijian ◽  
Zhao Xu

Intensive and continuous mining of coal resources in China implies their gradual exhaustion, especially in the eastern regions. While some mines face closure, others have to extract residual coal resources under buildings, water bodies, and industrial sites. Thus, safe and efficient mining of the residual coal resources requires innovative techniques, which would account for the particular site’s geological conditions. In this study, two schemes of roadway mining with cemented paste backfilling (RMCPB) and strip mining are put forward. After analyzing the type, construction, and protection standard of the buildings, the probability integration method and the prediction model are used to assess the surface subsidence and deformation. The research results show that both schemes can control the surface deformation to a certain extent, but RMCPB combines the advantages of a high coal recovery rate and disposal of gangue waste. According to the surface subsidence predicted and measured data, the RMCPB method can effectively control the surface subsidence, deformation, and buildings’ safety. It also yields significant economic and environmental benefits.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shan Ning ◽  
Weibing Zhu ◽  
Xiaoyong Yi ◽  
Laolao Wang

Disturbances owing to coal mining result in the movement and failure of floor strata. Mining-induced fractures within the floor may propagate to the confined aquifer, thereby causing water inrush disasters. In this study, we propose using strip mining and backfill replacement mining above the confined aquifer to investigate the failure depth of the floor. The problem is simplified as a distributed force model on a half-plane body. First, the stress disturbance of the floor during strip mining is calculated and the results are combined with the von Mises yield criterion. Then, the destruction of the floor after replacing the remaining coal pillars is explored. The results show that the widths of the strip mining face and coal pillars play an important role in affecting the failure depth of the floor: the greater the width, the larger the failure depth. Based on the parametric study results, the mining face and retention coal pillar width of 20 m is sufficient to prevent the occurrence of water inrush accidents. After the replacement of the remaining coal pillars, the failure area of the floor rock mass increases, but the maximum failure depth remains unchanged. Finally, we employed field measurement techniques at the Bucun coal mine to monitor the shear and vertical strains of the floor. The data collected was compared with the predicted results obtained from the proposed theoretical model. Good agreement was found between the monitoring and calculation results, which demonstrate the effectiveness of the proposed method.


Bothalia ◽  
2021 ◽  
Vol 51 (1) ◽  
Author(s):  
F. Siebert ◽  
N. Van Staden ◽  
D.M. Komape ◽  
A.M. Swemmer ◽  
S.J. Siebert

Background: Low altitude Mopaneveld savanna in the northeastern parts of South Africa is generally well conserved. However, extensive copper mining, agricultural practices and urbanisation in the Phalaborwa region prompted research on the possible effects of land-use change on plant community diversity and function. Species diversity measures are usually considered adequate to assess disturbance effects to inform conservation efforts and management practices. However, diversity measures based on species level accounts often limit the outcomes of these studies as this approach fails to quantify how disturbances affect ecosystem functioning when community assembly, and not species diversity alone, is altered by land-use change.Objectives: The aim of this study was to apply both species and functional diversity measures to a data set derived from various land-use types (i.e. areas exposed to strip mining activities, communal farming practices and conservation) in the Phalaborwa region to examine the effects of land-use change on the community ecology of the herbaceous layer.Results: Land-use change, particularly severe top-soil disturbances through strip mining activities, had a significant filtering effect on all measures of species diversity, though functional evenness was maintained across land-use types.Conclusion: These results suggest that, despite initial species loss, this particular savanna ecosystem is buffered against anthropogenic disturbances through functional stability. Indicator species analyses, as well as relationships between plant functional types and land-use change, revealed that forb species are largely responsible for ecosystem stability in areas exposed to  anthropogenic disturbances.


Author(s):  
Rama Dhar Dwivedi ◽  
Abhay Kumar Soni

Mostly, hills are mined by ‘Strip mining’ i.e. removing the hills from top. This conventional approach destroys the landscape and defaces the beauty of the hill. Besides, a large amount of dust generated at source disturbs the villagers and nearby human settlements during the excavation operation or related activities. To eliminate this, and remove the ‘out yard dumping of material’, except at initial stage i.e. during developmental phase, if tunneling methods of civil construction work is applied, ‘the conventional hill mining’ can be turned into an eco-friendly hill mining with very little planning efforts. This chapter highlights the abovementioned aspects of ‘hill mining’ covering overviews about the ‘hill mining by tunneling method’. In this technique, the extraction of mineral deposits is done by driving tunnels at the bottom (or other accessible higher level of the hills) and combining it with cross-cuts and adits, to protect the green cover and the serene hill environment. A case study of limestone mining in hilly Meghalaya region of India forms a part of the description where its feasibility exists.


Sign in / Sign up

Export Citation Format

Share Document