CO2 treatment in an autonomous underwater vehicle powered by a direct methanol fuel cell

Author(s):  
Antonio Villalba-Herreros ◽  
Rafael d’Amore-Domenech ◽  
Ricardo Abad ◽  
Teresa J. Leo ◽  
E. Navarro
Author(s):  
Antonio Villalba-Herreros ◽  
Teresa J. Leo ◽  
Ricardo Abad

Autonomous underwater vehicles (AUVs) are versatile machines capable of more and more complex missions including the offshore industry. The ability to carry out some missions relies on the endurance the vehicle is provided with. In this sense, fuel cells are found to be very adequate devices to enlarge AUVs endurance because of the high energy density and specific energy they can achieve, but the application of fuel cell technology to AUVs faces specific challenges that need to be overcome. The present work describes the conceptual design process of a typical AUV powered by a direct methanol fuel cell. Methanol is a high available fuel and its handling system is simple. The obtained results indicate that the manufacturing of such a vehicle is possible within several constrains, being the carbon dioxide treatment system the most critical component of the energy plant. The projected vehicle is compared to current vehicles on the market showing the improved endurance.


2011 ◽  
Author(s):  
Timothy Hall ◽  
Corey Grice ◽  
Bogdan Gurau ◽  
Paul McGinn

2013 ◽  
Vol 11 (2) ◽  
Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

The performance of a new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally investigated. This fuel cell type has the capability of recycling/washing away methanol, without the need of methanol-electrolyte separation. Three fuel cell configurations were examined: a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output, where minimal decay in performance and less than 3% and 5.6% variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34%. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as along with a cell temperature of 52.8 °C provided the best performance. Since this fuel cell has a low optimal operating temperature, this fuel cell has potential applications for handheld portable devices.


Sign in / Sign up

Export Citation Format

Share Document