polyether ether ketone
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 219)

H-INDEX

31
(FIVE YEARS 8)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liwu Wang ◽  
Yanfeng Han ◽  
Dongxing Tang ◽  
Jianlin Cai

Purpose The purpose of this paper is to verify the effectiveness of the proposed transient mixed lubrication and wear coupling model [mixed lubrication and wear (MLW) coupling model] under water lubricated conditions by comparing with the experimental results. Design/methodology/approach Water lubricated bearings are the key parts of the transmission system of an underwater vehicle and some surface ships. In this study, the friction and wear behaviors of rubber, nylon and polyether ether ketone (PEEK) samples with stainless steel underwater lubrication were compared by using ring-block contact structure on multifunctional friction and wear test bench-5000 friction and wear tester. Findings The results show that the transient wear depth and wear amount of PEEK, nylon and rubber samples under water lubrication are in good agreement with the calculated results of the theoretical model, which verifies the rationality and scientific nature of the MLW coupling model. Thus, the numerical model is applicable for the wear prediction of the journal bearing under water-lubricated conditions. Furthermore, numerical and experimental results reveal that the anti-wear performance among three water-lubricated materials can be ranked by: PEEK > nylon > rubber. Originality/value It is expected that this study can provide more information for experimental and numerical research of water-lubricated bearings under water-lubricated conditions.


2022 ◽  
pp. 095400832110665
Author(s):  
Lian Liu ◽  
Haitao Duan ◽  
Wen Zhan ◽  
Shengpeng Zhan ◽  
Dan Jia ◽  
...  

Exposing engineering plastics to UV irradiation can easily destroy the original molecular structure of the materials and consequently affect their tribological properties. This study investigated the effects of UV irradiation on the molecular structure of typical engineering plastics, such as polytetrafluoroethylene (PTFE) and polyether ether ketone (PEEK), and on their tribological properties under heavy loads (20 MPa). The surface morphology results showed that the appearance of PEEK changed significantly under UV irradiation. However, the change in PTFE was negligible. Under micromorphology, the processing lines of the two materials gradually became lighter with increasing UV irradiation time. The resulting infrared spectra showed that the molecular chains of both materials were broken, and new functional groups were formed under UV irradiation. Tribology testing demonstrated that with prolonged UV irradiation, the average PTFE coefficient of friction remained relatively stable, whereas that of PEEK was approximately 0.55. As the UV irradiation time increased, the wear rate of PTFE increased significantly, whereas that of PEEK showed no significant change.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 444
Author(s):  
Aritro Banerjee ◽  
Rajnish Kaur Calay ◽  
Fasil Ejigu Eregno

Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly. The principle of MFC is the same as hydrogen fuel cell and has three main components (i.e., anode, cathode, and proton exchange membrane). The membrane separates the anode and cathode chambers and keeps the anaerobic and aerobic conditions in the two chambers, respectively. This review paper describes the state-of-the-art membrane materials particularly suited for MFC and discusses the recent development to obtain robust, sustainable, and cost-effective membranes. Nafion 117, Flemion, and Hyflon are the typical commercially available membranes used in MFC. Use of non-fluorinated polymeric membrane materials such as sulfonated silicon dioxide (S-SiO2) in sulfonated polystyrene ethylene butylene polystyrene (SSEBS), sulfonated polyether ether ketone (SPEEK) and graphene oxide sulfonated polyether ether ketone (GO/SPEEK) membranes showed promising output and proved to be an alternative material to Nafion 117. There are many challenges to selecting a suitable membrane for a scaled-up MFC system so that the technology become technically and economically viable.


Author(s):  
Baisong Yang ◽  
Wenhui Chen ◽  
Renlong Xin ◽  
Xiaohong Zhou ◽  
Di Tan ◽  
...  

AbstractThe porous structure in pomelo peel is believed to be responsible for the protection of its fruit from damage during the free falling from a tree. The quantitative understanding of the relationship between the deformation behavior and the porous structure could pave the way for the design of porous structures for efficient energy absorption. Here, a universal feature of pore distribution in pomelo peels along the radial direction is extracted from three varieties of pomelos, which shows strong correlation to the deformation behavior of the peels under compression. Guided by the porous design found in pomelo peels, porous polyether-ether-ketone (PEEK) cube is additively manufactured and possesses the highest ability to absorb energy during compression as compared to the non-pomelo-inspired geometries, which is further confirmed by the finite element simulation. The nature-optimized porous structure revealed here could guide the design of lightweight and high-energy-dissipating materials/devices.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8139
Author(s):  
Marie-Anne Lebel-Cormier ◽  
Tommy Boilard ◽  
Martin Bernier ◽  
Luc Beaulieu

Fiber Bragg gratings (FBGs) are valuable dosimeters for doses up to 100 kilograys (kGy), but have hardly been used for the low-dose range of a few grays (Gy) required in medical radiation dosimetry. We report that embedding a doped silica fiber FBG in a polymer material allows a minimum detectable dose of 0.3 Gy for γ-radiation. Comparing the detector response for different doped silica fibers with various core doping, we obtain an independent response, in opposition to what is reported for high-dose range. We hypothesized that the sensor detection is based on the radio-induced thermal expansion of the surrounding polymer. Hence, we used a simple physical model based on the thermal and mechanical properties of the surrounding polymer and obtained good accordance between measured and calculated values for different compositions and thicknesses. We report that over the 4 embedding polymers tested, polyether ether ketone and polypropylene have respectively the lowest (0.056 pm/Gy) and largest sensitivity (0.087 pm/Gy). Such FBG-based dosimeters have the potential to be distributed along the fiber to allow multipoint detection while having a sub-millimeter size that could prove very useful for low-dose applications, in particular for radiotherapy dosimetry.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4046
Author(s):  
Rupak Dua ◽  
Zuri Rashad ◽  
Joy Spears ◽  
Grace Dunn ◽  
Micaela Maxwell

Polyether ether ketone (PEEK) is an organic polymer that has excellent mechanical, chemical properties and can be additively manufactured (3D-printed) with ease. The use of 3D-printed PEEK has been growing in many fields. This article systematically reviews the current status of 3D-printed PEEK that has been used in various areas, including medical, chemical, aerospace, and electronics. A search of the use of 3D-printed PEEK articles published until September 2021 in various fields was performed using various databases. After reviewing the articles, and those which matched the inclusion criteria set for this systematic review, we found that the printing of PEEK is mainly performed by fused filament fabrication (FFF) or fused deposition modeling (FDM) printers. Based on the results of this systematic review, it was concluded that PEEK is a versatile material, and 3D-printed PEEK is finding applications in numerous industries. However, most of the applications are still in the research phase. Still, given how the research on PEEK is progressing and its additive manufacturing, it will soon be commercialized for many applications in numerous industries.


Sign in / Sign up

Export Citation Format

Share Document