Direct Sums and Direct Products

2021 ◽  
pp. 185-196
Author(s):  
Steven J. Rosenberg
Keyword(s):  
2013 ◽  
Vol 94 (2) ◽  
pp. 276-288 ◽  
Author(s):  
PHILL SCHULTZ

AbstractWe characterize the abelian groups $G$ for which the functors $\mathrm{Ext} (G, - )$ or $\mathrm{Ext} (- , G)$ commute with or invert certain direct sums or direct products.


Author(s):  
Wan Wu ◽  
Zenghui Gao

We introduce and study strongly Gorenstein subcategory [Formula: see text], relative to an additive full subcategory [Formula: see text] of an abelian category [Formula: see text]. When [Formula: see text] is self-orthogonal, we give some sufficient conditions under which the property of an object in [Formula: see text] can be inherited by its subobjects and quotient objects. Then, we introduce the notions of one-sided (strongly) Gorenstein subcategories. Under the assumption that [Formula: see text] is closed under countable direct sums (respectively, direct products), we prove that an object is in right (respectively, left) Gorenstein category [Formula: see text] (respectively, [Formula: see text]) if and only if it is a direct summand of an object in right (respectively, left) strongly Gorenstein subcategory [Formula: see text] (respectively, [Formula: see text]). As applications, some known results are obtained as corollaries.


1972 ◽  
Vol 37 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Philip Olin

First order properties of direct products and direct sums (weak direct products) of relational systems have been studied extensively. For example, in Feferman and Vaught [3] an effective procedure is given for reducing such properties of the product to properties of the factors, and thus in particular elementary equivalence is preserved. We consider here two-sorted relational systems, with the direct product and sum operations keeping one of the sorts stationary. (See Feferman [4] for a similar definition of extensions.)These considerations are motivated by the example of direct products and sums of modules [8], [9]. In [9] examples are given to show that the direct product of two modules (even having only a finite number of module elements) does not preserve two-sorted (even universal) equivalence for any finite or infinitary language Lκ, λ. So we restrict attention here to direct powers and multiples (many copies of one structure). Also in [9] it is shown (for modules, but the proofs generalize immediately to two-sorted structures with a finite number of relations) that the direct multiple operation preserves first order ∀E-equivalence and the direct power operation preserves first order ∀-equivalence. We show here that these results for general two-sorted structures in a finite first order language are, in a sense, best-possible. Examples are given to show that does not imply , and that does not imply .


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

A module [Formula: see text] is called coseparable ([Formula: see text]-coseparable) if for every submodule [Formula: see text] of [Formula: see text] such that [Formula: see text] is finitely generated ([Formula: see text] is simple), there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is finitely generated. In this paper, we show that free modules are coseparable. We also investigate whether or not the ([Formula: see text]-)coseparability is stable under taking submodules, factor modules, direct summands, direct sums and direct products. We show that a finite direct sum of coseparable modules is not, in general, coseparable. But the class of [Formula: see text]-coseparable modules is closed under finite direct sums. Moreover, it is shown that the class of coseparable modules over noetherian rings is closed under finite direct sums. A characterization of coseparable modules over noetherian rings is provided. It is also shown that every lifting (H-supplemented) module is coseparable ([Formula: see text]-coseparable).


2017 ◽  
Vol 29 (5) ◽  
pp. 1125-1144 ◽  
Author(s):  
Maria Ferrer ◽  
Salvador Hernández ◽  
Dmitri Shakhmatov

AbstractLet I be an infinite set, let {\{G_{i}:i\in I\}} be a family of (topological) groups and let {G=\prod_{i\in I}G_{i}} be its direct product. For {J\subseteq I}, {p_{J}:G\to\prod_{j\in J}G_{j}} denotes the projection. We say that a subgroup H of G is(i)uniformly controllable in G provided that for every finite set {J\subseteq I} there exists a finite set {K\subseteq I} such that {p_{J}(H)=p_{J}(H\cap\bigoplus_{i\in K}G_{i})}, (ii)controllable in G provided that {p_{J}(H)=p_{J}(H\cap\bigoplus_{i\in I}G_{i})} for every finite set {J\subseteq I},(iii)weakly controllable in G if {H\cap\bigoplus_{i\in I}G_{i}} is dense in H, when G is equipped with the Tychonoff product topology.One easily proves that (i) {\Rightarrow} (ii) {\Rightarrow} (iii). We thoroughly investigate the question as to when these two arrows can be reversed. We prove that the first arrow can be reversed when H is compact, but the second arrow cannot be reversed even when H is compact. Both arrows can be reversed if all groups {G_{i}} are finite. When {G_{i}=A} for all {i\in I}, where A is an abelian group, we show that the first arrow can be reversed for all subgroups H of G if and only if A is finitely generated. We also describe compact groups topologically isomorphic to a direct product of countably many cyclic groups. Connections with coding theory are highlighted.


1994 ◽  
Vol 65 (3) ◽  
pp. 265-271 ◽  
Author(s):  
L. Fuchs ◽  
L. M. Pretorius
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document