Direct sums of injective semimodules and direct products of projective semimodules over semirings

2010 ◽  
Vol 54 (10) ◽  
pp. 27-37 ◽  
Author(s):  
S. N. Il’in
Keyword(s):  
2013 ◽  
Vol 94 (2) ◽  
pp. 276-288 ◽  
Author(s):  
PHILL SCHULTZ

AbstractWe characterize the abelian groups $G$ for which the functors $\mathrm{Ext} (G, - )$ or $\mathrm{Ext} (- , G)$ commute with or invert certain direct sums or direct products.


Author(s):  
Wan Wu ◽  
Zenghui Gao

We introduce and study strongly Gorenstein subcategory [Formula: see text], relative to an additive full subcategory [Formula: see text] of an abelian category [Formula: see text]. When [Formula: see text] is self-orthogonal, we give some sufficient conditions under which the property of an object in [Formula: see text] can be inherited by its subobjects and quotient objects. Then, we introduce the notions of one-sided (strongly) Gorenstein subcategories. Under the assumption that [Formula: see text] is closed under countable direct sums (respectively, direct products), we prove that an object is in right (respectively, left) Gorenstein category [Formula: see text] (respectively, [Formula: see text]) if and only if it is a direct summand of an object in right (respectively, left) strongly Gorenstein subcategory [Formula: see text] (respectively, [Formula: see text]). As applications, some known results are obtained as corollaries.


1972 ◽  
Vol 37 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Philip Olin

First order properties of direct products and direct sums (weak direct products) of relational systems have been studied extensively. For example, in Feferman and Vaught [3] an effective procedure is given for reducing such properties of the product to properties of the factors, and thus in particular elementary equivalence is preserved. We consider here two-sorted relational systems, with the direct product and sum operations keeping one of the sorts stationary. (See Feferman [4] for a similar definition of extensions.)These considerations are motivated by the example of direct products and sums of modules [8], [9]. In [9] examples are given to show that the direct product of two modules (even having only a finite number of module elements) does not preserve two-sorted (even universal) equivalence for any finite or infinitary language Lκ, λ. So we restrict attention here to direct powers and multiples (many copies of one structure). Also in [9] it is shown (for modules, but the proofs generalize immediately to two-sorted structures with a finite number of relations) that the direct multiple operation preserves first order ∀E-equivalence and the direct power operation preserves first order ∀-equivalence. We show here that these results for general two-sorted structures in a finite first order language are, in a sense, best-possible. Examples are given to show that does not imply , and that does not imply .


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

A module [Formula: see text] is called coseparable ([Formula: see text]-coseparable) if for every submodule [Formula: see text] of [Formula: see text] such that [Formula: see text] is finitely generated ([Formula: see text] is simple), there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is finitely generated. In this paper, we show that free modules are coseparable. We also investigate whether or not the ([Formula: see text]-)coseparability is stable under taking submodules, factor modules, direct summands, direct sums and direct products. We show that a finite direct sum of coseparable modules is not, in general, coseparable. But the class of [Formula: see text]-coseparable modules is closed under finite direct sums. Moreover, it is shown that the class of coseparable modules over noetherian rings is closed under finite direct sums. A characterization of coseparable modules over noetherian rings is provided. It is also shown that every lifting (H-supplemented) module is coseparable ([Formula: see text]-coseparable).


2017 ◽  
Vol 29 (5) ◽  
pp. 1125-1144 ◽  
Author(s):  
Maria Ferrer ◽  
Salvador Hernández ◽  
Dmitri Shakhmatov

AbstractLet I be an infinite set, let {\{G_{i}:i\in I\}} be a family of (topological) groups and let {G=\prod_{i\in I}G_{i}} be its direct product. For {J\subseteq I}, {p_{J}:G\to\prod_{j\in J}G_{j}} denotes the projection. We say that a subgroup H of G is(i)uniformly controllable in G provided that for every finite set {J\subseteq I} there exists a finite set {K\subseteq I} such that {p_{J}(H)=p_{J}(H\cap\bigoplus_{i\in K}G_{i})}, (ii)controllable in G provided that {p_{J}(H)=p_{J}(H\cap\bigoplus_{i\in I}G_{i})} for every finite set {J\subseteq I},(iii)weakly controllable in G if {H\cap\bigoplus_{i\in I}G_{i}} is dense in H, when G is equipped with the Tychonoff product topology.One easily proves that (i) {\Rightarrow} (ii) {\Rightarrow} (iii). We thoroughly investigate the question as to when these two arrows can be reversed. We prove that the first arrow can be reversed when H is compact, but the second arrow cannot be reversed even when H is compact. Both arrows can be reversed if all groups {G_{i}} are finite. When {G_{i}=A} for all {i\in I}, where A is an abelian group, we show that the first arrow can be reversed for all subgroups H of G if and only if A is finitely generated. We also describe compact groups topologically isomorphic to a direct product of countably many cyclic groups. Connections with coding theory are highlighted.


1994 ◽  
Vol 65 (3) ◽  
pp. 265-271 ◽  
Author(s):  
L. Fuchs ◽  
L. M. Pretorius
Keyword(s):  

2002 ◽  
Vol 01 (03) ◽  
pp. 289-294
Author(s):  
MAHER ZAYED ◽  
AHMED A. ABDEL-AZIZ

In the present paper, modules which are subisomorphic (in the sense of Goldie) to their pure-injective envelopes are studied. These modules will be called almost pure-injective modules. It is shown that every module is isomorphic to a direct summand of an almost pure-injective module. We prove that these modules are ker-injective (in the sense of Birkenmeier) over pure-embeddings. For a coherent ring R, the class of almost pure-injective modules coincides with the class of ker-injective modules if and only if R is regular. Generally, the class of almost pure-injective modules is neither closed under direct sums nor under elementary equivalence. On the other hand, it is closed under direct products and if the ring has pure global dimension less than or equal to one, it is closed under reduced products. Finally, pure-semisimple rings are characterized, in terms of almost pure-injective modules.


Sign in / Sign up

Export Citation Format

Share Document