Magnetic Induction Based Simultaneous Wireless Information and Power Transmission

2018 ◽  
pp. 17-37
Author(s):  
Steven Kisseleff ◽  
Ian F. Akyildiz ◽  
Wolfgang H. Gerstacker
1994 ◽  
Vol 3 (3) ◽  
pp. 125 ◽  
Author(s):  
R. Leitch ◽  
H. Freitag ◽  
A. Stefanini ◽  
G. Tornielli

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
pp. 3-7
Author(s):  
Vladlen Ya. Shifrin ◽  
Denis I. Belyakov ◽  
Alexander E. Shilov ◽  
Denis D. Kosenko

The results of works aimed at increasing the level of uniformity of measurements of the magnetic induction of a constant field – the basic value in the field of magnetic measurements. A set of equipment for reproducing a unit of magnetic induction of a constant field in the range of 1–25 mT was created and described. The inclusion of this complex in the State primary standard of units of magnetic induction, magnetic flux, magnetic moment and magnetic induction gradient GET 12-2011 will ensure the reproduction and direct transmission of the unit of permanent magnetic induction in the ranges of not only weak (10–3–1 mT), but medium (1–25 mT) and strong (0.025–1 T) magnetic fields. A quantum cesium magnetometer based on the resolved structure of cesium atoms was created to transmit the unit of magnetic induction to the region of medium fields. The procedure for calculating the frequency conversion coefficients to magnetic induction of the created quantum cesium magnetometer is described. The uncertainty budget for reproducing a unit of magnetic induction of a constant field using the created complex is estimated.


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document