Research on expanding the range of reproduction of magnetic flux density of the DC field of the state primary standard GET12-2011

2020 ◽  
pp. 3-7
Author(s):  
Vladlen Ya. Shifrin ◽  
Denis I. Belyakov ◽  
Alexander E. Shilov ◽  
Denis D. Kosenko

The results of works aimed at increasing the level of uniformity of measurements of the magnetic induction of a constant field – the basic value in the field of magnetic measurements. A set of equipment for reproducing a unit of magnetic induction of a constant field in the range of 1–25 mT was created and described. The inclusion of this complex in the State primary standard of units of magnetic induction, magnetic flux, magnetic moment and magnetic induction gradient GET 12-2011 will ensure the reproduction and direct transmission of the unit of permanent magnetic induction in the ranges of not only weak (10–3–1 mT), but medium (1–25 mT) and strong (0.025–1 T) magnetic fields. A quantum cesium magnetometer based on the resolved structure of cesium atoms was created to transmit the unit of magnetic induction to the region of medium fields. The procedure for calculating the frequency conversion coefficients to magnetic induction of the created quantum cesium magnetometer is described. The uncertainty budget for reproducing a unit of magnetic induction of a constant field using the created complex is estimated.

1991 ◽  
Vol 34 (10) ◽  
pp. 967-972 ◽  
Author(s):  
V. N. Kalabin ◽  
V. E. Chernyshev ◽  
V. N. Khorev ◽  
A. E. Shilov ◽  
V. Ya. Shifrin

2021 ◽  
Vol 17 (2) ◽  
pp. 59-71
Author(s):  
Yu. I. Kamenskikh ◽  
V. S. Snegov

The article discusses the calibration results of reference standards-copies according to the State Primary Standard of the Mass Unit using the new CCL 1007 vacuum comparator and buoyancy artifacts. The authors provided historical data on the calibrations of copies of the International Prototype of the Kilogram (IPK) starting from 1892, including the Russian prototype № 12. The instability of the prototype of the kilogram No. 12 corresponds to international values and is assessed at 5 · 10–11 kg per year. Changes in the mass of copies are assessed in relation to the mass of the IPK, but it is impossible to determine to what extent it has changed. This was the reason for the adoption of a new value of the kilogram. Following the adoption at the 26th meeting of the General Conference on Weights and Measures (CGPM) held in Paris in November 2018, Planck constant was numerically established with absolute accuracy, and total uncer tainty of 1 · 10–8 kg was assigned to the mass of the IPK. Thus, the authors set the aim to preserve the numerical value of the total uncertainty of the reference standards-copies by reducing the transfer error of the State Primary Standard by 10 times. The article presents the calibration results of six reference standards-copies in relation to prototype No. 12 with the primary data processing using the method of least squares, and the uncertainty budget is provided. The calibration results of the reference standards-copies confirmed the accuracy increase of the transfer unit by 10 times in the range from 6 · 10–9 kg to 6 · 10–10 kg by the use of a vacuum comparator graduated 0.1 μg and buoyancy and sorption artifacts in direct measurements of air density. This has made it possible to compensate for the additional uncertainty attributed to the IPK based on the determination of the Planck constant value and to ensure the mass calibration of all accuracy grades preserving the entire hierarchical system of transferring the mass unit in the country.


2012 ◽  
Vol 55 (7) ◽  
pp. 739-744
Author(s):  
V. Ya. Shifrin ◽  
V. N. Khorev ◽  
V. N. Kalabin ◽  
S. L. Voronov ◽  
A. E. Shilov

2007 ◽  
Vol 50 (7) ◽  
pp. 695-699 ◽  
Author(s):  
V. S. Ivanov ◽  
A. F. Kotyuk ◽  
A. A. Liberman ◽  
S. A. Moskalyuk ◽  
M. V. Ulanovskii

2009 ◽  
Vol 52 (10) ◽  
pp. 1101-1106
Author(s):  
O. M. Lozinskaya ◽  
N. I. Rybak ◽  
V. Ya. Cherepanov ◽  
E. M. Sheinin ◽  
V. A. Yamshanov

Sign in / Sign up

Export Citation Format

Share Document