Evaluation of optimal yaw rate reference for electric vehicle torque vectoring

2016 ◽  
pp. 619-624 ◽  
Author(s):  
E.N. Smith ◽  
E. Velenis ◽  
D. Cao ◽  
D. Tavernini
2014 ◽  
Vol 47 (3) ◽  
pp. 12010-12015 ◽  
Author(s):  
Gerd Kaiser ◽  
Qin Liu ◽  
Christian Hoffmann ◽  
Matthias Korte ◽  
Herbert Werner

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8143
Author(s):  
Junnian Wang ◽  
Siwen Lv ◽  
Nana Sun ◽  
Shoulin Gao ◽  
Wen Sun ◽  
...  

The anxiety of driving range and inconvenience of battery recharging has placed high requirements on the energy efficiency of electric vehicles. To reduce driving-wheel slip energy consumption while cornering, a torque vectoring control strategy for a rear-wheel independent-drive (RWID) electric vehicle is proposed. First, the longitudinal linear stiffness of each driving wheel is estimated by using the approach of recursive least squares. Then, an initial differential torque is calculated for reducing their overall tire slippage energy dissipation. However, before the differential torque is applied to the two side of driving wheels, an acceleration slip regulation (ASR) is introduced into the overall control strategy to avoid entering into the tire adhesion saturation region resulting in excessive slip. Finally, the simulations of typical manoeuvring conditions are performed to verify the veracity of the estimated tire longitudinal linear stiffness and effectiveness of the torque vectoring control strategy. As a result, the proposed torque vectoring control leads to the largest reduction of around 17% slip power consumption for the situations carried out above.


Electric vehicle (EV) are being embraced in recent times as they run on clean fuel, zero tail emission and are environment-friendly. Recent advancements in the field of power electronics and control strategies have made it possible to the advent in the vehicle dynamics, efficiency and range. This paper presents a design for traction control system (TCS) for longitudinal stability and Direct Yaw Control (DYC) for lateral stability simultaneous. The TCS and DYC is based on multiple frequency controlled electronic differential with a simple and effective approach. Along with it, some overviews have been presented on some state of the art in traction control system (TCS) and torque vectoring. The developed technique reduces nonlinearity, multisensory interfacing complexity and response time of the system. This torque and yaw correction strategy can be implemented alongside fuzzy control, sliding mode or neural network based controller. The effectiveness of the control method has been validated using a lightweight neighbourhood electric vehicle as a test platform. The acquired results confirm the versatility of proposed design and can be implemented in any DC motor based TCS/DYC.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang Su ◽  
Zhenpo Wang ◽  
Chao Chen

Purpose The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs. Design/methodology/approach The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm. Findings The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively. Originality/value In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.


Sign in / Sign up

Export Citation Format

Share Document