scholarly journals On Ultrametric Algorithmic Information

2017 ◽  
pp. 133-145
Author(s):  
Fionn Murtagh
2021 ◽  
pp. 089443932110068
Author(s):  
Aleksandra Urman ◽  
Mykola Makhortykh ◽  
Roberto Ulloa

We examine how six search engines filter and rank information in relation to the queries on the U.S. 2020 presidential primary elections under the default—that is nonpersonalized—conditions. For that, we utilize an algorithmic auditing methodology that uses virtual agents to conduct large-scale analysis of algorithmic information curation in a controlled environment. Specifically, we look at the text search results for “us elections,” “donald trump,” “joe biden,” “bernie sanders” queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex, during the 2020 primaries. Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents using the same search engine. It highlights that whether users see certain information is decided by chance due to the inherent randomization of search results. We also find that some search engines prioritize different categories of information sources with respect to specific candidates. These observations demonstrate that algorithmic curation of political information can create information inequalities between the search engine users even under nonpersonalized conditions. Such inequalities are particularly troubling considering that search results are highly trusted by the public and can shift the opinions of undecided voters as demonstrated by previous research.


2021 ◽  
pp. 146144482199380
Author(s):  
Donghee Shin

How much do anthropomorphisms influence the perception of users about whether they are conversing with a human or an algorithm in a chatbot environment? We develop a cognitive model using the constructs of anthropomorphism and explainability to explain user experiences with conversational journalism (CJ) in the context of chatbot news. We examine how users perceive anthropomorphic and explanatory cues, and how these stimuli influence user perception of and attitudes toward CJ. Anthropomorphic explanations of why and how certain items are recommended afford users a sense of humanness, which then affects trust and emotional assurance. Perceived humanness triggers a two-step flow of interaction by defining the baseline to make a judgment about the qualities of CJ and by affording the capacity to interact with chatbots concerning their intention to interact with chatbots. We develop practical implications relevant to chatbots and ascertain the significance of humanness as a social cue in CJ. We offer a theoretical lens through which to characterize humanness as a key mechanism of human–artificial intelligence (AI) interaction, of which the eventual goal is humans perceive AI as human beings. Our results help to better understand human–chatbot interaction in CJ by illustrating how humans interact with chatbots and explaining why humans accept the way of CJ.


Author(s):  
Andreia Teixeira ◽  
Andre Souto ◽  
Armando Matos ◽  
Luis Antunes

2021 ◽  
Vol 11 (6) ◽  
pp. 2696
Author(s):  
Aritra Sarkar ◽  
Zaid Al-Ars ◽  
Koen Bertels

Inferring algorithmic structure in data is essential for discovering causal generative models. In this research, we present a quantum computing framework using the circuit model, for estimating algorithmic information metrics. The canonical computation model of the Turing machine is restricted in time and space resources, to make the target metrics computable under realistic assumptions. The universal prior distribution for the automata is obtained as a quantum superposition, which is further conditioned to estimate the metrics. Specific cases are explored where the quantum implementation offers polynomial advantage, in contrast to the exhaustive enumeration needed in the corresponding classical case. The unstructured output data and the computational irreducibility of Turing machines make this algorithm impossible to approximate using heuristics. Thus, exploring the space of program-output relations is one of the most promising problems for demonstrating quantum supremacy using Grover search that cannot be dequantized. Experimental use cases for quantum acceleration are developed for self-replicating programs and algorithmic complexity of short strings. With quantum computing hardware rapidly attaining technological maturity, we discuss how this framework will have significant advantage for various genomics applications in meta-biology, phylogenetic tree analysis, protein-protein interaction mapping and synthetic biology. This is the first time experimental algorithmic information theory is implemented using quantum computation. Our implementation on the Qiskit quantum programming platform is copy-left and is publicly available on GitHub.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 534 ◽  
Author(s):  
Hector Zenil ◽  
Narsis Kiani ◽  
Jesper Tegnér

We introduce a definition of algorithmic symmetry in the context of geometric and spatial complexity able to capture mathematical aspects of different objects using as a case study polyominoes and polyhedral graphs. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov–Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumerate all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity—both theoretical and numerical—with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize spatial, geometric, symmetric and topological properties of mathematical objects and graphs.


Sign in / Sign up

Export Citation Format

Share Document