algorithmic probability
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Santiago Hernández-Orozco ◽  
Hector Zenil ◽  
Jürgen Riedel ◽  
Adam Uccello ◽  
Narsis A. Kiani ◽  
...  

We show how complexity theory can be introduced in machine learning to help bring together apparently disparate areas of current research. We show that this model-driven approach may require less training data and can potentially be more generalizable as it shows greater resilience to random attacks. In an algorithmic space the order of its element is given by its algorithmic probability, which arises naturally from computable processes. We investigate the shape of a discrete algorithmic space when performing regression or classification using a loss function parametrized by algorithmic complexity, demonstrating that the property of differentiation is not required to achieve results similar to those obtained using differentiable programming approaches such as deep learning. In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.


Author(s):  
Aritra Sarkar ◽  
Zaid Al-Ars ◽  
Koen Bertels

In this article we explore the limiting behavior of the universal prior distribution obtained when applied over multiple meta-level hierarchy of programs and output data of a computational automata model. We were motivated to alleviate the effect of Solomonoff's assumption that all computable functions or hypotheses of the same length are equally likely, by weighing each program in turn by the algorithmic probability of their description number encoding. In the limiting case, the set of all possible program strings of a fixed-length converges to a distribution of self-replicating quines and quine-relays - having the structure of a constructor. We discuss how experimental algorithmic information theory provides insights towards understanding the fundamental metrics proposed in this work and reflect on the significance of these result in digital physics and the constructor theory of life.


2019 ◽  
Vol 47 (20) ◽  
pp. e129-e129
Author(s):  
Hector Zenil ◽  
Peter Minary

AbstractWe introduce and study a set of training-free methods of an information-theoretic and algorithmic complexity nature that we apply to DNA sequences to identify their potential to identify nucleosomal binding sites. We test the measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint high and low nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that the complexity indices are informative of nucleosome occupancy. We found that, while it is clear that the gold standard Kaplan model is driven by GC content (by design) and by k-mer training; for high occupancy, entropy and complexity-based scores are also informative and can complement the Kaplan model.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 552
Author(s):  
Miloud Bessafi ◽  
Dragutin T. Mihailović ◽  
Peng Li ◽  
Anja Mihailović ◽  
Jean-Pierre Chabriat

The complexity of solar radiation fluctuations received on the ground is nowadays of great interest for solar resource in the context of climate change and sustainable development. Over tropical maritime area, there are small inhabited islands for which the prediction of the solar resource at the daily and infra-daily time scales are important to optimize their solar energy systems. Recently, studies show that the theory of the information is a promising way to measure the solar radiation intermittency. Kolmogorov complexity (KC) is a useful tool to address the question of predictability. Nevertheless, this method is inaccurate for small time series size. To overcome this drawback, a new encoding scheme is suggested for converting hourly solar radiation time series values into a binary string for calculation of Kolmogorov complexity (KC-ES). To assess this new approach, we tested this method using the 2004–2006 satellite hourly solar data for the western part of the Indian Ocean. The results were compared with the algorithmic probability (AP) method which is used as the benchmark method to compute the complexity for short string. These two methods are a new approach to compute the complexity of short solar radiation time series. We show that KC-ES and AP methods give comparable results which are in agreement with the physical variability of solar radiation. During the 2004–2006 period, an important interannual SST (sea surface temperature) anomaly over the south of Mozambique Channel encounters in 2005, a strong MJO (Madden–Julian oscillation) took place in May 2005 over the equatorial Indian Ocean, and nine tropical cyclones crossed the western part of the Indian Ocean in 2004–2005 and 2005–2006 austral summer. We have computed KC-ES of the solar radiation time series for these three events. The results show that the Kolmogorov complexity with suggested encoding scheme (KC-ES) gives competitive measure of complexity in regard to the AP method also known as Solomonoff probability.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 534 ◽  
Author(s):  
Hector Zenil ◽  
Narsis Kiani ◽  
Jesper Tegnér

We introduce a definition of algorithmic symmetry in the context of geometric and spatial complexity able to capture mathematical aspects of different objects using as a case study polyominoes and polyhedral graphs. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov–Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumerate all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity—both theoretical and numerical—with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize spatial, geometric, symmetric and topological properties of mathematical objects and graphs.


Author(s):  
Hector Zenil ◽  
Liliana Badillo ◽  
Santiago Hernández-Orozco ◽  
Francisco Hernández-Quiroz

2018 ◽  
Vol 28 (01) ◽  
pp. 1850005 ◽  
Author(s):  
Hector Zenil ◽  
Narsis A. Kiani ◽  
Ming-mei Shang ◽  
Jesper Tegnér

Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.


Sign in / Sign up

Export Citation Format

Share Document