Application of Prokić Warping Function to Lateral-Torsional Buckling of Thin Walled Structures

2018 ◽  
pp. 827-834 ◽  
Author(s):  
K. Saadé ◽  
B. Espion ◽  
G. Warzée
2020 ◽  
Author(s):  
T. Lewiński ◽  
S. Czarnecki

Abstract By endowing El Fatmi’s theories of bars with first-order warping functions due to torsion and shear, a family of theories of bars, of various applicability ranges, is effectively constructed. The theories thus formed concern bars of arbitrary cross-sections; they are reformulations of the mentioned theories by El Fatmi and theories by Kim and Kim, Librescu and Song, Vlasov and Timoshenko. The Vlasov-like theory thus developed is capable of describing the torsional buckling and lateral buckling phenomena of bars of both solid and thin-walled cross-sections, which reflects the non-trivial correspondence, noted by Wagner and Gruttmann, between the torsional St.Venant’s warping function and the contour-wise defined warping functions proposed by Vlasov. Moreover, the present paper delivers an explicit construction of the constitutive equations of Timoshenko’s theory; the equations linking transverse forces with the measures of transverse shear turn out to be coupled for all bars of asymmetric cross-sections. The modeling is hierarchical: the warping functions are numerically constructed by solving the three underlying 2D scalar elliptic problems, providing the effective characteristics for the 1D models of bars. The 2D and 1D problems are indissolubly bonded, thus forming a unified scientific tool, deeply rooted in the hitherto existing knowledge on elasticity of elastic straight bars.


Author(s):  
Emre Erkmen ◽  
Vida Niki ◽  
Ashkan Afnani

A shear deformable hybrid finite element formulation is developed for the lateral-torsional buckling analysis of fiber-reinforced composite thin-walled members with open cross-section. The method is developed by using the Hellinger-Reissner functional. Comparison to the displacement-based formulations the current hybrid formulation has the advantage of incorporating the shear deformation effects easily by using the strain energy of the shear stress field without modifying the basic kinematic assumptions of the thin-walled beam theory. Numerical results are validated through comparisons with results based on other formulations presented in the literature. Examples illustrate the effects of shear deformations and stacking sequence of the composite layers in predicting bucking loads.


Sign in / Sign up

Export Citation Format

Share Document