Application of Generalised Beam Theory in Predicting Lateral Torsional Buckling of Thin-Walled Steel Sections

2021 ◽  
pp. 37-47
Author(s):  
Shashi Kant Sharma ◽  
K. V. Praveen Kumar ◽  
M. Abdul Akbar ◽  
Dadi Rambabu
Author(s):  
Emre Erkmen ◽  
Vida Niki ◽  
Ashkan Afnani

A shear deformable hybrid finite element formulation is developed for the lateral-torsional buckling analysis of fiber-reinforced composite thin-walled members with open cross-section. The method is developed by using the Hellinger-Reissner functional. Comparison to the displacement-based formulations the current hybrid formulation has the advantage of incorporating the shear deformation effects easily by using the strain energy of the shear stress field without modifying the basic kinematic assumptions of the thin-walled beam theory. Numerical results are validated through comparisons with results based on other formulations presented in the literature. Examples illustrate the effects of shear deformations and stacking sequence of the composite layers in predicting bucking loads.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2014 ◽  
Vol 553 ◽  
pp. 600-605
Author(s):  
Gerard Taig ◽  
Gianluca Ranzi

A Generalised Beam Theory (GBT) formulation is presented to analyse the structural behaviour of shear deformable thin-walled members with partially stiffened cross-sections located at arbitrary locations along their length. The deformation modes used in the formulation are taken as the dynamic eigenmodes of a planar frame representing the unstiffened cross-section. Constraint equations are derived and implemented in the GBT member analysis to model the influence of rigid stiffeners on the member response. The accuracy of the approach is validated against a shell finite element model developed in Abaqus. A numerical example describing the linear elastic behaviour of partially stiffened thin-walled member is provided to outline the usability and flexibility of the proposed method.


2015 ◽  
Vol 802 ◽  
pp. 178-183 ◽  
Author(s):  
Hazwani Hasan ◽  
Fatimah De’nan ◽  
Kok Keong Choong

Triangular web profile (TriWP) is a structural steel section made of two flanges connected to a web plate of triangular profile. The ability of TriWP to resist lateral–torsional buckling (LTB) is one of the most important criteria considered in the design of this steel section. This study examined the LTB behavior of TriWP steel section and determined the buckling moment resistance (Mb,Rd) for TriWP. Beam specimens were analyzed using a four-point bending test. Four types of specimen sizes were used: 200 mm × 100 mm × 6.3 mm × 6 mm; 200 mm × 100 mm × 9 mm × 6.3 mm; 200 mm × 100 mm × 8 mm × 6 mm; and 200 mm × 100 mm × 6 mm × 5 mm sections. Testing results for all specimen sizes showed that the values for Mb,Rdof the TriWP steel sections were higher than those of the flat web section. The percentage difference of Mb,Rdfrom the experimental results for all specimen sizes ranged from 10.38% to 17.37%. The percentage difference of Mb,Rdof the experimental and design values based on manual calculation by using Eurocode 3 ranged from 9.13% to 43.8%.


Sign in / Sign up

Export Citation Format

Share Document