2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Darae Jeong ◽  
Yibao Li ◽  
Chaeyoung Lee ◽  
Junxiang Yang ◽  
Yongho Choi ◽  
...  

In this paper, we propose a verification method for the convergence rates of the numerical solutions for parabolic equations. Specifically, we consider the numerical convergence rates of the heat equation, the Allen–Cahn equation, and the Cahn–Hilliard equation. Convergence test results show that if we refine the spatial and temporal steps at the same time, then we have the second-order convergence rate for the second-order scheme. However, in the case of the first-order in time and the second-order in space scheme, we may have the first-order or the second-order convergence rates depending on starting spatial and temporal step sizes. Therefore, for a rigorous numerical convergence test, we need to perform the spatial and the temporal convergence tests separately.


Author(s):  
Pedro Freitas ◽  
Guido Sweers

In this paper we consider a second-order linear nonlocal elliptic operator on a bounded domain in ℝn (n ≧ 3), and give conditions which ensure that this operator has a positive inverse. This generalises results of Allegretto and Barabanova, where the kernel of the nonlocal operator was taken to be separable. In particular, our results apply to the case where this kernel is the Green's function associated with second-order uniformly elliptic operators, and thus include the case of some linear elliptic systems. We give several other examples. For a specific case which appears when studying the linearisation of nonlocal parabolic equations around stationary solutions, we also consider the associated eigenvalue problem and give conditions which ensure the existence of a positive eigenfunction associated with the smallest real eigenvalue.


2011 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Serhat Yilmaz ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document