positive eigenfunction
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Qi Li ◽  
Shuangjie Peng

This paper deals with the following fractional elliptic equation with critical exponent \[ \begin{cases} \displaystyle (-\Delta )^{s}u=u_{+}^{2_{s}^{*}-1}+\lambda u-\bar{\nu}\varphi_{1}, & \text{in}\ \Omega,\\ \displaystyle u=0, & \text{in}\ {{\mathfrak R}}^{N}\backslash \Omega, \end{cases}\] where $\lambda$ , $\bar {\nu }\in {{\mathfrak R}}$ , $s\in (0,1)$ , $2^{*}_{s}=({2N}/{N-2s})\,(N>2s)$ , $(-\Delta )^{s}$ is the fractional Laplace operator, $\Omega \subset {{\mathfrak R}}^{N}$ is a bounded domain with smooth boundary and $\varphi _{1}$ is the first positive eigenfunction of the fractional Laplace under the condition $u=0$ in ${{\mathfrak R}}^{N}\setminus \Omega$ . Under suitable conditions on $\lambda$ and $\bar {\nu }$ and using a Lyapunov-Schmidt reduction method, we prove the fractional version of the Lazer-McKenna conjecture which says that the equation above has infinitely many solutions as $|\bar \nu | \to \infty$ .


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 550
Author(s):  
Shinmi Ahn ◽  
Hyungbin Park

Recent studies have suggested that it is feasible to recover a physical measure from a risk-neutral measure. Given a market state variable modeled as a Markov process, the key concept is to extract a unique positive eigenfunction of the generator of the Markov process. In this work, the feasibility of this recovery theory is examined. We prove that, under a restrictive integrability condition, recovery is feasible if and only if both endpoints of the state variable are limit-point. Several examples with explicit positive eigenfunctions are considered. However, in general, a physical measure cannot be recovered from a risk-neutral measure. We provide a financial and mathematical rationale for such recovery failure.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yujun Cui ◽  
Jingxian Sun

We will present a generalization of Mahadevan’s version of the Krein-Rutman theorem for a compact, positively 1-homogeneous operator on a Banach space having the properties of being increasing with respect to a conePand such that there is a nonzerou∈P∖{θ}−Pfor whichMTpu≥ufor some positive constantMand some positive integerp. Moreover, we give some new results on the uniqueness of positive eigenvalue with positive eigenfunction and computation of the fixed point index. As applications, the existence of positive solutions forp-Laplacian boundary-value problems is considered under some conditions concerning the positive eigenvalues corresponding to the relevant positively 1-homogeneous operators.


2008 ◽  
Vol 28 (2) ◽  
pp. 501-533 ◽  
Author(s):  
KRERLEY OLIVEIRA ◽  
MARCELO VIANA

AbstractWe develop a Ruelle–Perron–Fröbenius transfer operator approach to the ergodic theory of a large class of non-uniformly expanding transformations on compact manifolds. For Hölder continuous potentials not too far from constant, we prove that the transfer operator has a positive eigenfunction, which is piecewise Hölder continuous, and use this fact to show that there is exactly one equilibrium state. Moreover, the equilibrium state is a non-lacunary Gibbs measure, a non-uniform version of the classical notion of Gibbs measure that we introduce here.


2006 ◽  
Vol 92 (3) ◽  
pp. 655-681 ◽  
Author(s):  
C. A. STUART ◽  
HUAN-SONG ZHOU

We consider the stationary non-linear Schrödinger equation\begin{equation*}\Delta u + \{1 + \lambda g(x)\} u = f(u)\mbox{with}u \in H^{1} (\mathbb{R}^{N}), u \not\equiv 0,\end{equation*} where $\lambda >0$ and the functions $f$ and $g$ are such that\begin{equation*} \lim_{s \rightarrow 0}\frac{f(s)}{s} = 0 \mbox{and} 1 < \alpha + 1 = \lim _{|s| \rightarrow \infty}\frac{f(s)}{s} < \infty\end{equation*} and \begin{equation*} g(x)\equiv 0 \mbox{on} \bar{\Omega}, g(x)\in (0, 1] \mbox{on} {\mathbb{R}^{N}} \setminus {\overline{\Omega}} \mbox{and} \lim_{|x| \rightarrow + \infty} g(x) = 1 \end{equation*} for some bounded open set $\Omega \in \mathbb{R}^{N}$. We use topological methods to establish the existence of two connected sets $\mathcal{D}^{\pm}$ of positive/negative solutions in $\mathbb{R} \times W^{2, p} (\mathbb{R}^{N})$ where $p \in [2, \infty) \cap (\frac{N}{2},\infty)$ that cover the interval $(\alpha,\Lambda(\alpha))$ in the sense that \begin{align*} P \mathcal{D}^{\pm} & = (\alpha, \Lambda(\alpha)) \text{where}P(\lambda, u) = \lambda \text{and furthermore,} \\ \lim_{\lambda \rightarrow \Lambda(\alpha)-}\left\Vert u_{\lambda} \right\Vert _{L^{\infty} (\mathbb{R}^{N})} & = \lim_{\lambda \rightarrow \Lambda (\alpha )-} \left\Vert u_{\lambda} \right\Vert _{W^{2, p}(\mathbb{R}^{N})} = \infty \text{ for }(\lambda, u_{\lambda}) \in \mathcal{D}^{\pm}. \end{align*} The number $\Lambda(\alpha)$ is characterized as the unique value of $\lambda$ in the interval $(\alpha, \infty)$ for which the asymptotic linearization has a positive eigenfunction. Our work uses a degree for Fredholm maps of index zero.


2004 ◽  
Vol 47 (2) ◽  
pp. 353-363 ◽  
Author(s):  
José Carmona ◽  
Antonio Suárez

AbstractIn this paper we study the eigenvalues associated with a positive eigenfunction of a quasilinear elliptic problem with an operator that is not necessarily bounded. For that, we use the bifurcation theory and obtain the existence of positive solutions for a range of values of the bifurcation parameter.AMS 2000 Mathematics subject classification: Primary 35J60; 35J25. Secondary 35D05


Author(s):  
Pedro Freitas ◽  
Guido Sweers

In this paper we consider a second-order linear nonlocal elliptic operator on a bounded domain in ℝn (n ≧ 3), and give conditions which ensure that this operator has a positive inverse. This generalises results of Allegretto and Barabanova, where the kernel of the nonlocal operator was taken to be separable. In particular, our results apply to the case where this kernel is the Green's function associated with second-order uniformly elliptic operators, and thus include the case of some linear elliptic systems. We give several other examples. For a specific case which appears when studying the linearisation of nonlocal parabolic equations around stationary solutions, we also consider the associated eigenvalue problem and give conditions which ensure the existence of a positive eigenfunction associated with the smallest real eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document