Nonlinear Dynamics of Continuous Mass Structural Systems

Author(s):  
Bulent Ovunc
Author(s):  
A. A. Abdelrahman ◽  
A. E. Nabawy ◽  
A. M. Abdelhaleem ◽  
S. S. Alieldin ◽  
M. A. Eltaher

2000 ◽  
Vol 16 (2) ◽  
pp. 79-83
Author(s):  
Francis C. Moon

ABSTRACTIn this short note a comparison is made between the methodology of nonlinear analysis in machine systems versus structural systems. Because of strong nonlinearities in machines with parts in relative motion, chaotic-like dynamics are more likely to occur in complex multi-body machines than in structural systems. Furthermore, it is conjectured that well designed machines have evolved to where a small amount of chaos is always present and is sometimes desired.


Author(s):  
A. Kurdila ◽  
J. Li

Abstract Previous research has demonstrated that rigorous modeling and identification theory can be derived for structural dynamical models that incorporate control influence operators that are static Krasnoselskii-Pokrovskii integral hysteresis operators. Experimental evidence likewise has shown that some dynamic hysteresis models provide more accurate representations of a class of structural systems actuated by some active materials including shape memory alloys and piezoceramics. In this paper, we show that the representation of control influence operators via static hysteresis operators can be interpreted in terms of a homogeneous Young’s measure. Within this framework, we subsequently derive dynamic hysteresis operators represented in terms of Young’s measures that are parameterized in time. We show that the resulting integrodifferential equations are similar to the class of relaxed controls discussed by Warga [10], Garnkrelidze [24], and Roubicek [25]. The formulation presented here differs from that studied in [10], [24] and [25] in that the kernel of the hysteresis operator is a history dependent functional, as opposed to Caratheodory integral satisfying a growth condition. The theory presented provides representations of dynamic hysteresis operators that have provided good agreement with experimental behavior in some active materials.


1995 ◽  
Vol 50 (2) ◽  
pp. 107-108 ◽  
Author(s):  
Michael F. Halasz

2010 ◽  
Author(s):  
Patrice Renaud ◽  
Mathieu Goyette ◽  
Simon Zhornicki ◽  
Dominique Trottier ◽  
Joanne-L. Rouleau ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document