continuous mass
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 23)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Ольга Витальевна Малышкина ◽  
Кирилл Валерьевич Пацуев ◽  
Александра Ивановна Иванова ◽  
Майс Али

Авторами исследовано влияние температуры синтеза ниобата натрия, на состояние поляризации в образцах керамики чистого ниобата натрия и модифицированного литием. Проведено сравнительное исследование структуры и пироэлектрических свойств полученных образцов. Показано, что введение в качестве модификатора лития приводит к существенному изменению структуры в глубине образцов керамики на основе ниобата натрия. Если в глубине образцов чистого ни ниобата натрия, как и на поверхности, различаются отдельные зерна, то центральная часть керамики ниобата натрия-лития представляет собой сплошной массив, в котором отдельные зерна не наблюдаются. Во всех образцах, кроме чистого ниобата натрия, синтезированного двойным синтезом (первый при 650 °C, второй при 700 °C), установлено существование градиента поляризации по толщине образцов, направленного от стороны, соответствующей положительному концу вектора поляризации к стороне, соответствующей отрицательному концу вектора поляризации. The authors studied the effect of the temperature of sodium niobate synthesis on the state of polarization in ceramic samples of pure sodium niobate and modified with lithium. A comparative study of the structure and pyroelectric properties of the obtained samples has been carried out. It is shown that the introduction of lithium as a modifier leads to a significant change in the structure in the depth of ceramic samples based on sodium niobate. If in the depth of the pure sodium niobate samples, as well as on the surface, there are individual grains, then the central part of the sodium niobate-lithium niobate ceramics is a continuous mass in which individual grains are not observed. In all samples, except for pure sodium niobate, which was synthesized by double synthesis (the first at 650 °C, the second at 700 °C), the existence of a polarization gradient along the thickness of the samples was established. The gradient is directed from the side corresponding to the positive end of the polarization vector to the side corresponding to the negative end of the polarization vector.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 493
Author(s):  
Chiara Elmi ◽  
Anna Cipriani ◽  
Federico Lugli ◽  
Giampaolo Sighinolfi

In this study, twenty five partially vitrified rocks and four samples of vitrified rocks collected on the top hill called Serravuda (Acri, Calabria, Italy) are analyzed. The goal is to shed light on the origin of these enigmatic vitrified materials. The analyzed vitrified rocks are a breccia of cemented rock fragments (gneiss, granitoid, and amphibolite fragments) which extends for more than 10 m, forming a continuous mass along the northern and north-west border of the flat top hill. Surrounded by the vitrified accumulation, exposed Paleozoic granitoid substrate rocks show limited melting or heat-alteration processes. By mapping minerals embedded in the glass matrix via X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM), an interpretation of source rock material, reactions, and thermometric indications to form vitrified materials on the top hill of Serravuda, Acri (Italy), is provided. The mineralogical composition of heated or partially vitrified samples is heterogeneous owing to the effects of heating events, but it mostly recalls the parent rock composition (gneiss, granitoid, and amphibolite). The presence of quartz, cristobalite, tridymite, mullite, plagioclase, hercynite, cordierite, and olivine in Serravuda partially vitrified rocks and glasses suggests that samples were subjected to pyrometamorphism and the temperature range at which the glass formed was about 1000–1100 °C in the presence of hydrous gas, burning organic material (e.g., wood), and assuming thermodynamic equilibrium. Lithologies of the heated or partially vitrified rock fragments are a mixture of parent rocks not outcropping on the top of the hill such as gneiss and amphibolite. Data suggest that Serravuda vitrified rocks are most likely the result of anthropic activities and could represent remnants of vitrified fort walls. The mineral assemblage of partially vitrified rocks and glasses suggests that the fort walls were made of slabs derived from the local metamorphic rocks with the addition of Serravuda substrate Paleozoic granitoid rocks to improve the strength and insulation of the fort walls.


2021 ◽  
Vol 243 ◽  
pp. 106075
Author(s):  
Binwei Liu ◽  
Xi Zhang ◽  
Ziwei Wang ◽  
Weiyuan Li ◽  
Qi Zhang ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 657-662
Author(s):  
Kouakou Yao Kouman Nestor ◽  
◽  
Gala Bi Trazie Jeremie ◽  
Yao Guy Fernand ◽  
Kouadio Kouassi Gerard ◽  
...  

A morphopedological study was conducted on a 10 hectares plot of land near the village of Bopri in the sub-prefecture of Brobo. The objective was to identify the soils of this site in order to have a general overview of the soils of this region, which is poorly known from a pedological point of view and where the rare information relating to the soils goes back decades. Its implementation required the opening of 7 soil pits distributed homogeneously over the entire site in order to guarantee the representativeness of the information collected during these investigations. In total, this study revealed that this site contains a large proportion of typically ferralitic soils with deep indurations Haplic Ferralsols (Endopetric). However, in addition to this dominant category, anthropogenic Leptosols are found, which are characterised by a continuous mass of duricrust starting less than 25 cm deep and whose formation is consecutive of human activities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Diandong Ren ◽  
Aixue Hu

The widely used 15-year Gravity Recovery and Climate Experiment (GRACE) measured mass redistribution shows an increasing trend in the nontidal Earth’s moment of inertia (MOI). Various contributing components are independently evaluated using five high-quality atmospheric reanalysis datasets and a novelty numerical modeling system. We found a steady, statistically robust (passed a two-tailed t-test at p = 0.04 for dof = 15) rate of MOI increase reaching ∼11.0 × 1027 kg m2/yr, equivalent to a 11.45 sμ/yr increase in the length of day, during 2002–2017. Further analysis suggests that the Antarctic ice sheet contributes the most, followed by the Greenland ice sheet, the precipitation-driven land hydrological cycle, mountain glaciers, and the fluctuation of atmosphere, in this order. Short-term MOI spikes from the GRACE measurements are mostly associated with major low/mid-latitude earthquakes, fitting closely with the MOI variations from the hydrological cycle. Atmospheric fluctuation contributes the least but has a steady trend of 0.5 sμ/yr, with horizontal mass distribution contributing twice as much as the vertical expansion and associated lift of the atmosphere’s center of mass. The latter is a previously overlooked term affecting MOI fluctuation. The contribution to the observed MOI trend from a warming climate likely will persist in the future, largely due to the continuous mass loss from the Earth’s ice sheets.


2021 ◽  
Author(s):  
Kocsis György ◽  
Gabor Henap

Abstract The following work introduces a method to carry out patient specific implant design based on computer tomography (CT) imaging technique. Point cloud bone model and the solid model creation process is described in detail. Using the radiodensity level of the CT-scan the continuous distribution of the elastic properties of the bone is also been recorded and used for the material model of the finite element procedure. For this purpose, a continuous mass density – elastic modulus curve is suggested, based on previous results in the literature. Stress shielding poses a serious issue regarding the survival of an implant. Strain energy density (SED) is a good indicator of the effects that drive the remodeling. Based on local SED difference caused by the implant this phenomenon can be quantified and visualized. This makes it possible to classify or redesign the implant in order to minimize the potential bone loss caused by the altered stress state.


Author(s):  
S. Schellert ◽  
B. Gorr ◽  
H.- J. Christ ◽  
C. Pritzel ◽  
S. Laube ◽  
...  

AbstractIn this study, the effect of Al on the high temperature oxidation of Al-containing refractory high entropy alloys (RHEAs) Ta-Mo-Cr-Ti-xAl (x = 5; 10; 15; 20 at%) was examined. Oxidation experiments were performed in air for 24 h at 1200 °C. The oxidation kinetics of the alloy with 5 at% Al is notably affected by the formation of gaseous MoO3 and CrO3, while continuous mass gain was detected for alloys with the higher Al concentrations. The alloys with 15 and 20 at% Al form relatively thin oxide scales and a zone of internal corrosion due to the formation of dense CrTaO4 scales at the interface oxide/substrate. The alloys with 5 and 10 at% Al exhibit, on the contrary, thick and porous oxide scales because of fast growing Ta2O5. The positive influence of Al on the formation of Cr2O3 followed by the growth of CrTaO4 to yield a compact scale is explained by getter and nucleation effects.


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


Author(s):  
M A Aragon-Calvo

Abstract We introduce a method for generating a continuous, mass-conserving and high-order differentiable density field from a discrete point distribution such as particles or haloes from an N-body simulation or galaxies from a spectroscopic survey. The method consists on generating an ensemble of point realizations by perturbing the original point set following the geometric constraints imposed by the Delaunay tessellation in the vicinity of each point in the set. By computing the mean field of the ensemble we are able to significantly reduce artifacts arising from the Delaunay tessellation in poorly sampled regions while conserving the features in the point distribution. Our implementation is based on the Delaunay Tessellation Field Estimation (DTFE) method, however other tessellation techniques are possible. The method presented here shares the same advantages of the DTFE method such as self-adaptive scale, mass conservation and continuity, while being able to reconstruct even the faintest structures of the point distribution usually dominated by artifacts in Delaunay-based methods. Additionally, we also present preliminary results of an application of this method to image denoising and artefact removal, highlighting the broad applicability of the technique introduced here.


Author(s):  
Senol Hakan Kutoglu ◽  
Kazimierz Becek

Mediterranean Ridge accretionary complex (MAC) is one of the most critical subduction zones in the world. It is known that the region exhibits a continuous mass change (horizontal/vertical movements). This process is associated with the devastating and tragic earthquakes shaking the MAC for centuries. Here, we investigate the ocean bottom pressure (OBP) anomalies in the MAC derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) satellite missions. The OBP time series for the MAC comprises a decreasing trend in addition to 1-, 1.53-, 2.36-, 3.67-, and 9.17-year periodic components partially explained by the atmosphere, oceans, and hydrosphere (AOH) processes, and Earth's pole movement. We noticed that the OBP anomalies appear to link to a rising trend and periods in earthquakes' power time series. This finding sheds new light on the mechanisms controlling the most destructive natural hazard.


Sign in / Sign up

Export Citation Format

Share Document