Countercurrent Shear Layer Control of Premixed Flames

Author(s):  
E Koc-Alkislar ◽  
L Lourenco ◽  
A Krothapalli
1997 ◽  
Author(s):  
E. Koc-Alkislar ◽  
L. Lourenco ◽  
A. Krothapalli ◽  
P. Strykowski ◽  
E. Koc-Alkislar ◽  
...  

2021 ◽  
Vol 105 ◽  
pp. 103325
Author(s):  
Thomas McQueen ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Mark C. Thompson

1996 ◽  
Vol 33 (6) ◽  
pp. 1087-1093 ◽  
Author(s):  
S. McCormick ◽  
I. Gursul

2006 ◽  
Vol 129 (1) ◽  
pp. 91-99 ◽  
Author(s):  
R. D. Gillgrist ◽  
D. J. Forliti ◽  
P. J. Strykowski

Suction was applied asymmetrically to the exhaust of a rectangular subsonic jet creating a pressure field capable of vectoring the primary flow at angles up to 15deg. The suction simultaneously creates low pressures near the jet exhaust and conditions capable of drawing a secondary flow along the jet shear layer in the direction opposite to the primary jet. This countercurrent shear layer is affected both by the magnitude of the suction source as well as the proximity of an adjacent surface onto which the pressure forces act to achieve vectoring. This confined countercurrent flow gives rise to elevated turbulence levels in the jet shear layer as well as considerable increases in the gradients of the turbulent stresses. The turbulent stresses are responsible for producing a pressure field conducive for vectoring the jet at considerably reduced levels of secondary mass flow than would be possible in their absence.


Author(s):  
Alison A. Behrens ◽  
Matthew J. Anderson ◽  
Paul J. Strykowski ◽  
David J. Forliti

Research to advance our understanding of the countercurrent shear flow has been conducted, with particular emphasis on those characteristics of countercurrent shear that are beneficial for combustion applications. Studies carried out in a backward-facing step combustor burning prevaporized JP10-air mixtures, have examined the implementation of counterflow as a means to enhance turbulent burning velocities, with the overall objective of increasing volumetric heat release rates and thereby create a more compact combustion zone. The dump combustor is characterized by a nominally two-dimensional primary flow mixture of prevaporized fuel and air, entering a rectangular channel before encountering a 2:1 single-sided step expansion. Flow separation over the sudden expansion and the resulting recirculation set up a countercurrent shear layer downstream of the dump plane and a low velocity zone conducive to flame anchoring. Combustion control strategies aim to increase turbulent kinetic energy and flame three-dimensionality in an effort to increase flame surface area and thus burning rates. A secondary flow is created via suction at the dump plane as a fluidic control mechanism to enhance the naturally occurring countercurrent shear layer. Counterflow is shown to elevate turbulence levels and volumetric heat release rates downstream of the step in the base geometry while concomitantly reducing the scale of the recirculation zone[1]. Modifications to the rearward-facing step geometry are investigated using Particle Image Velocimetry (PIV) under isothermal flow conditions in an effort to extend the near field interaction between the recirculation zone and the incoming primary flow, thus exploiting the benefits of counterflow as seen in the base geometry. Using chemiluminescence, relative heat release rates are shown to increase by 90% with a counterflow level of 6% of the primary flow by mass in the base geometry, and a 150% increase with a counterflow level of 2.4% in the modified step geometry.


1999 ◽  
Vol 122 (1) ◽  
pp. 3-13 ◽  
Author(s):  
F. S. Alvi ◽  
P. J. Strykowski ◽  
A. Krothapalli ◽  
D. J. Forliti

A fluidic scheme is described which exploits a confined countercurrent shear layer to achieve multiaxis thrust vector response of supersonic jets in the absence of moving parts. Proportional and continuous control of jet deflection is demonstrated at Mach numbers up to 2, for pitch vectoring in rectangular nozzles and multiaxis vectoring in axisymmetric nozzles. Secondary mass flow rates less than approximately 2% of the primary flow are used to achieve thrust vector angles exceeding 15 degrees. Jet slew rates up to 180 degrees per second are shown, and the fluidic scheme is examined in both static and wind-on configurations. Thrust performance is studied for external coflow velocities between Mach 0.3 and 0.7. [S0098-2202(00)02601-8]


Sign in / Sign up

Export Citation Format

Share Document