countercurrent shear
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Jinwei Yang ◽  
Matt J. Anderson ◽  
Paul J. Strykowski ◽  
Vinod Srinivasan




Author(s):  
Prasad Kalghatgi ◽  
Sumanta Acharya ◽  
Paul Strykowski ◽  
Matt Anderson

Countercurrent shear can be used in engineering applications to control flow structure and mixing. In the present paper a planar countercurrent shear flow is studied numerically using Large Eddy Simulation. Mean flow characteristics at a primary-jet Reynolds number of 14700 are studied for three values of a key parameter, the secondary to primary jet mass flow ratio (m˙s/m˙p), chosen to match reported measurements. The predicted flow results of time averaged flow field, Strouhal number and turbulence characteristics are compared with the experimentally available data. A change in instability modes is observed at mass flow ratios above m˙s/m˙p = 0.27 with more than 100% increase in the turbulence levels and distinct changes in spectral characteristics. Detailed spectral records along with landau modeling are used as evidence of existence of self excited global mode beyond a critical velocity ratio in the flow.





AIAA Journal ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 1317-1323 ◽  
Author(s):  
A. A. Behrens ◽  
P. J. Strykowski


2006 ◽  
Vol 129 (1) ◽  
pp. 91-99 ◽  
Author(s):  
R. D. Gillgrist ◽  
D. J. Forliti ◽  
P. J. Strykowski

Suction was applied asymmetrically to the exhaust of a rectangular subsonic jet creating a pressure field capable of vectoring the primary flow at angles up to 15deg. The suction simultaneously creates low pressures near the jet exhaust and conditions capable of drawing a secondary flow along the jet shear layer in the direction opposite to the primary jet. This countercurrent shear layer is affected both by the magnitude of the suction source as well as the proximity of an adjacent surface onto which the pressure forces act to achieve vectoring. This confined countercurrent flow gives rise to elevated turbulence levels in the jet shear layer as well as considerable increases in the gradients of the turbulent stresses. The turbulent stresses are responsible for producing a pressure field conducive for vectoring the jet at considerably reduced levels of secondary mass flow than would be possible in their absence.



Author(s):  
D.J. Forliti ◽  
A.A. Behrens ◽  
B.A. Tang ◽  
P.J. Strykowski


2005 ◽  
Vol 127 (3) ◽  
pp. 438-448 ◽  
Author(s):  
David J. Forliti ◽  
Paul J. Strykowski

The present work describes the application of countercurrent shear flow control to the nonreacting flow in a novel step combustor. The countercurrent shear control employs a suction based approach, which induces counterflow through a gap at the sudden expansion plane. Peak turbulent fluctuation levels, cross-stream averaged turbulent kinetic energy, and cross-stream momentum diffusion increased with applied suction. The control downstream of the step operates via two mechanisms: enhanced global recirculation and near field control of the separated shear layer. The use of counterflow also enhances three dimensionality, a feature that is expected to be beneficial under burning conditions.



Author(s):  
Alison A. Behrens ◽  
Matthew J. Anderson ◽  
Paul J. Strykowski ◽  
David J. Forliti

Research to advance our understanding of the countercurrent shear flow has been conducted, with particular emphasis on those characteristics of countercurrent shear that are beneficial for combustion applications. Studies carried out in a backward-facing step combustor burning prevaporized JP10-air mixtures, have examined the implementation of counterflow as a means to enhance turbulent burning velocities, with the overall objective of increasing volumetric heat release rates and thereby create a more compact combustion zone. The dump combustor is characterized by a nominally two-dimensional primary flow mixture of prevaporized fuel and air, entering a rectangular channel before encountering a 2:1 single-sided step expansion. Flow separation over the sudden expansion and the resulting recirculation set up a countercurrent shear layer downstream of the dump plane and a low velocity zone conducive to flame anchoring. Combustion control strategies aim to increase turbulent kinetic energy and flame three-dimensionality in an effort to increase flame surface area and thus burning rates. A secondary flow is created via suction at the dump plane as a fluidic control mechanism to enhance the naturally occurring countercurrent shear layer. Counterflow is shown to elevate turbulence levels and volumetric heat release rates downstream of the step in the base geometry while concomitantly reducing the scale of the recirculation zone[1]. Modifications to the rearward-facing step geometry are investigated using Particle Image Velocimetry (PIV) under isothermal flow conditions in an effort to extend the near field interaction between the recirculation zone and the incoming primary flow, thus exploiting the benefits of counterflow as seen in the base geometry. Using chemiluminescence, relative heat release rates are shown to increase by 90% with a counterflow level of 6% of the primary flow by mass in the base geometry, and a 150% increase with a counterflow level of 2.4% in the modified step geometry.



Author(s):  
David J. Forliti ◽  
Alison A. Behrens ◽  
Paul J. Strykowski ◽  
Brian A. Tang

During the last decade, countercurrent shear has been established as an effective flow control technique for increasing turbulent mixing in a variety of flow configurations and operating regimes. Based on the robust mixing enhancement observed for jets and shear layers, the technique appears to have many potential benefits for enhancement and control for turbulent combustion flows. Countercurrent shear flow control has been applied to a planar asymmetric rearward-facing step dump combustor. A nonreacting flow study on the implementation of suction-based countercurrent shear at the dump plane provided insight into the flow control mechanisms. Control of turbulence velocity and length scales occurs through two mechanisms, the development of a countercurrent shear layer near the dump plane, and enhanced global recirculation caused by the removal of mass at the dump plane. Parametric studies on the geometry of the suction slot indicate that the enhancement of the global recirculation zone is the primary mechanism for increasing global turbulence levels within the combustor. Turbulence energy and length scales both increase in a manner such that the spatially-filtered strain rates as measured with particle image velocimetry remain nominally constant, a desirable characteristic for premixed turbulent combustion. Connections will be made to a recent study on fully-developed turbulent countercurrent shear layers showing additional attractive features of countercurrent shear including enhanced turbulent energy production, entrainment, and three dimensionality. Preliminary reacting flow results for the dump combustor operating while burning premixed/prevaporized JP-10 illustrate qualitative changes in the turbulent combustion process within the combustor. The companion paper will describe the quantitative effects of countercurrent shear on the global heat release rates within the combustor.



Sign in / Sign up

Export Citation Format

Share Document