Guide to Treatment Planning and Dose Delivery

Nukleonika ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Joanna Litoborska ◽  
Tomasz Piotrowski ◽  
Agata Jodda ◽  
Julian Malicki

AbstractBackground and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years.Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods.Results: The analysis of the evolution of radiotherapy methods shows how significantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verification methods, and the patient positioning can be checked by image guidance procedures.Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confirm the clinical value of new advanced techniques, clinical trials are required.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii37-ii37
Author(s):  
S Donche ◽  
J Verhoeven ◽  
C Bouckaert ◽  
B Descamps ◽  
R Raedt ◽  
...  

Abstract BACKGROUND Previously, a rat glioblastoma model to mimic chemo-radiation treatment of human glioblastoma in the clinic was established. Similarly to the clinic, CT and MRI were combined during the treatment planning process. PET imaging was subsequently added which allowed us to implement sub-volume boosting using a micro-irradiation system. However, combining three imaging modalities (CT, MRI and PET) using a micro-irradiation system, proved to be labour intensive because multimodal imaging, treatment planning and dose delivery have to be completed sequentially in the preclinical setting. MATERIAL AND METHODS Two different methodologies were compared in silico for performing preclinical [18F]FET PET based radiation therapy (20 Gy based on MRI, 8 Gy boost based on PET) based on three different cases. Method 1 is based on the previously published methods1,2. However, the process is automated using an in-house developed MATLAB code. Method 2 consists of a more sophisticated method where a series of isocenters and jaw dimensions for the motorised variable collimator were determined based on the [18F]FET PET uptake. Both methods were evaluated by means of the dose volume histograms (DVH) and Q-volume histograms. RESULTS The setup parameters for both methods were calculated. The DVHs for method 2 are systematically closer to the ideal dose distribution compared to method 1. These findings are confirmed by the D90 and D50 values which are considerably lower for method 1. When observing the Q-factor, method 2 always results in dose distributions that are closer to the dose objectives (method 1: 0.141±0.046; method 2: 0.064±0.011). CONCLUSION The described novel method to optimize the preclinical treatment planning process has many advantages in terms of dose delivery, time efficiency and variability, when compared to the previously used methods1,2. These improvements are important to narrow the gap between clinical and preclinical radiation research and for the development of new therapeutics and/or radiation therapy procedures for glioblastoma. 1. Bolcaen, J., Descamps, B., Boterberg, T., Vanhove, C. & Goethals, I. PET and MRI Guided Irradiation of a Glioblastoma Rat Model Using a Micro-irradiator. J. Vis. Exp. 1–10 (2017) doi:10.3791/56601. 2. Verhoeven, J. et al. Technical feasibility of [18F]FET and [18F]FAZA PET guided radiotherapy in a F98 glioblastoma rat model. Radiat. Oncol. 14, (2019).


2021 ◽  
Vol 38 (05) ◽  
pp. 542-553
Author(s):  
Grace Keane ◽  
Marnix Lam ◽  
Hugo de Jong

AbstractRadioembolization is a well-established treatment for primary and metastatic liver cancer. There is increasing interest in personalized treatment planning supported by dosimetry, as it provides an opportunity to optimize dose delivery to tumor and minimize nontarget deposition, which demonstrably increases the efficacy and safety of this therapy. However, the optimal dosimetry procedure in the radioembolization setting is still evolving; existing data are limited as few trials have prospectively tailored dose based on personalized planning and predominantly semi-empirical methods are used for dose calculation. Since the pretreatment or “scout” procedure forms the basis of dosimetry calculations, an accurate and reliable technique is essential. 99mTc-MAA SPECT constitutes the current accepted standard for pretreatment imaging; however, inconsistent patterns in published data raise the question whether this is the optimal agent. Alternative particles are now being introduced to the market, and early indications suggest use of an identical scout and treatment particle may be superior to the current standard. This review will undertake an evaluation of the increasingly refined dosimetric methods driving radioembolization practices, and a horizon scanning exercise identifying alternative scout particle solutions. Together these constitute a compelling vision for future treatment planning methods that prioritize individualized care.


2013 ◽  
Vol 40 (6Part14) ◽  
pp. 262-262
Author(s):  
L Song ◽  
H Lehmann ◽  
J Cusma ◽  
J Misiri ◽  
K Parker ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 347-354
Author(s):  
Sven Ferguson ◽  
Salahuddin Ahmad ◽  
Imad Ali

AbstractAim:The purpose of this study is to investigate the feasibility of proton arc therapy (PAT) using the double-scattering MEVION-S250 proton system. The treatment planning and dose delivery parameters from PAT were compared with conventional treatment planning techniques.Materials and methods:PAT was simulated with multiple conformal and fixed-aperture beams (5–15) using the MEVION-S250-double-scattering proton system. Conformal apertures were simulated with the Eclipse-treatment-planning system: (a) using a static single aperture that provides the best average conformal circular or rectangular apertures to cover the tumour from different angular views (SPAT), and (b) dynamic conformal apertures of the tumour shape at each irradiation angle that can be obtained from a multi-leaf-collimator system (DPAT).Results:The DPAT and SPAT plans provided superior dose coverage and sparing of normal tissues in comparison with conventional plans (CPT). The entrance normal tissue and skin doses (<40%) were lowered significantly by delivering dose from different directions over a wider angular view compared to conventional plans that have large entrance dose from only two fields. While the mean and minimum doses from PAT and CPT were comparable, the maximum doses from arc plans were lower than the maximum doses in conventional plans. The SPAT and DPAT plans had comparable dose parameters for regularly shaped targets. The heterogeneity index (HI) was superior in PAT plans which improved with increasing number of beams in arc plans for the different treatment sites. The conformality index (CI) depends on the treatment site and complexity of the shape of the planning target volume where for brain, pancreatic and lung tumours, PAT plans conformality was comparable and sometimes superior to CPT; and HI and CI were generally better in DPAT compared to SPAT.Conclusions:PAT plans have superior dose coverage and sparing of normal tissues compared to CPT plans using the MEVION double-scattering system as shown in this simulation study. Ideally, conformal proton arcs require beam shaping and dose delivery with the gantry moving; however, the MEVION double-scattering system lacks a multi-leaf collimator system and cannot deliver dose during gantry rotation. The single aperture conformal proton therapy technique is more time and cost effective compared with conventional techniques that are used currently with the MEVION proton therapy system because of the elimination of the need for patient-specific compensators. In present study, PAT was simulated with the MEVION double-scattering proton therapy system; however, it can be performed also with other proton therapy systems.


Sign in / Sign up

Export Citation Format

Share Document